Audio MNIST Digit Recognition

Context

In the past decades, significant advances have been achieved in the area of audio
recognition and a lot of research is going on globally to recognize audio data or speech
using Deep Learning. The most common use case in this field is converting audio to
spectrograms and vice versa.

Audio in its raw form is usually a wave and to capture that using a data structure, we
need to have a huge array of amplitudes even for a very short audio clip. Although it
depends on the sampling rate of the sound wave, this structured data conversion for any
audio wave is very voluminous even for low sampling rates. So it becomes a problem to
store and computationally very expensive to do even simple calculations on such data.

One of the best economical alternatives to this is using spectrograms. Spectrograms are
created by doing Fourier or Short Time Fourier Transforms on sound waves. There are
various kinds of spectrograms but the ones we will be using are called MFCC
spectrograms. To put it in simple terms, a spectrogram is a way to visually encapsulate
audio data. It is a graph on a 2-D plane where the X-axis represents time and the Y-axis
represents Mel Coefficients. But since it is continuous on a 2-D plane, we can treat this
as an image.

Objective

The objective here is to build an Artificial Neural Network that can look at Mel or MFCC
spectrograms of audio files and classify them into 10 classes. The audio files are
recordings of different speakers uttering a particular digit and the corresponding class to
be predicted is the digit itself.

Dataset

The dataset we will use is the Audio MNIST dataset, which has audio files (having .wav
extension) stored in 10 different folders. Each folder consists of these digits spoken by a
particular speaker.

Understanding the required packages

e Librosa : Librosa is a Python package that helps in dealing with audio data.
librosa.display visualizes and displays the audio data using Matplotlib. Similarly,
there exists a collection of submodules under librosa that provides various other
functionalities. Run the command in the below cell to install the library.

e IPython.display : Display is a public API to display the tools available in Ipython.
In this case study, we will create an audio object to display the digits in the MNIST
audio data.

e tqdm :tgdm is a Python package that allows us to add a progress bar to our
application. This package will help us in iterating over the audio data.

Importing the necessary libraries and loading the
data

For Audio Preprocessing

import librosa

import librosa.display as dsp
from IPython.display import Audio

For Data Preprocessing
import pandas as pd
import numpy as np
import os

For Data Visualization

import matplotlib.pyplot as plt
import seaborn as sns

from tgdm import tgdm

#The data 1is provided as a zip file
import zipfile
import os

sns.set_style("dark")

Check some of the audio samples

The below function called "get_audio" takes a digit as an argument and plots the audio
wave and returns the audio for a given digit.

Let's understand the functioning of some of the new functions used to create the
get_audio() function.

e ,waVv :.wav is a file format like .csv which stores the raw audio format. We will load
the .wav file using the librosa package.

e dsp.waveshow() : It visualizes the waveform in the time domain. This method
creates a plot that alternates between a raw samples-based view of the signal and
an amplitude-envelope view of the signal. The "sr" parameter is the sampling rate,
i.e., samples per second.

e Audio() : From the Ipython package, we can create an audio object.

def get_audio(digit = 0):

Audio Sample Directory
sample = np.random.randint(1, 10)

Index of Audio
index = np.random.randint(1, 5)

Modified file location
if sample < 10:
file = f"data/0{sample}/{digit}_0{sample}_{index}.wav"

else:
file = f"data/{sample}/{digit}_{sample}_{index}.wav"

Get Audio from the location

Audio will be automatically resampled to the given rate (default sr =
data, sample_rate = librosa.load(file)

Plot the audio wave
dsp.waveshow(data, sr = sample_rate)
plt.show()

Show the widget
return Audio(data = data, rate = sample_rate)

The history saving thread hit an unexpected error (OperationalError('attempt
to write a readonly database')).History will not be written to the database.

Show the audio and plot of digit 0
get_audio(0)

0.15

0.10

0.05

0.00

-0.05

-0.10

-0.15

0000 0100 0200 0300 0400 0500 0600 0700 0800 0900
Time

Out[4]:

P 0:00/0:00 e————)

In [5]: # Show the audio and plot of digit 1
get_audio(1)

0.2

0.1

0.0

-0.1

-0.2

0.000 0.100 0.200 0.300 0.400 0.500 0.600
Time

Out[5]: .
» 0:00/0:00 e————)

In [6]: # Show the audio and plot of digit 2
get_audio(2)

0.010

0.005

0.000

-0.005

-0.010

Q000 0080 0120 0180 0240 0300 0360 0420 0480
Time

out[e]:

P 0:00/0:00 e————)

In [7]: # Show the audio and plot of digit 3
get_audio(3)

0.020

0.015

0.010

0.005

0.000

-0.005

-0.010

-0.015

-0.020

0.000 0.100 0.200 0.300 0.400 0.500 0.600
Time

» 0:00/0:00 e————)

Show the audio and plot of digit 4
get_audio(4)

0.03

0.02

0.01

0.00

-0.01

-0.02

-0.03

0.000 0080 0120 0180 0240 0300 0360 0420 0480 0540
Time

P 0:00/0:00 e————)

Show the audio and plot of digit 5
get_audio(5)

0.03

0.02

0.01

0.00

-0.01

-0.02

-0.03

0.000 0.100 0.200 0.300 0.400 0.500 0.600
Time

P 0:00/0:00 e————)

Show the audio and plot of digit 6
get_audio(6)

0.03

0.02

0.01

0.00

-0.01

-0.02

-0.03

0.000 0100 0.200 0.300 0.400 0.500 0.600 0700
Time

P 0:00/0:00 e————)

Show the audio and plot of digit 7
get_audio(7)

0.02

0.01
0.00
-0.01
-0.02
0.000 0.100 0.200 0.300 0.400 0.500
Time

P 0:00/0:00 e————)

Show the audio and plot of digit 8
get_audio(8)

0.015

0.010

0.005

0.000

-0.005

-0.010

-0.015

0.000 0.100 0.200 0.300 0400 0.500 0.600
Time

P 0:00/0:00 e————)

Show the audio and plot of digit 9
get_audio(9)

0.015

0.010

0.005

0.000

-0.005

-0.010

-0.015

0.000 0.100 0.200 0.300 0400 0.500 0.600
Time

P 0:00/0:00 e————)

Observations:

e The X-axis represents time and Y-axis represents the amplitude of the vibrations.
The intuition behind the Fourier Transform is that any wave can be broken down or
deconstructed as a sum of many composite sine waves. Since these are composed
of sine waves, they are symmetric about the time axis, i.e, they extend equally above
and below the time axis at a particular time.

e From the various audio plots ranging from 0 to 9, we can observe the amplitude at a
given point in time. For example, when we say "Zero", the "Z" sound has low
amplitude and the "ero" sound has higher amplitude. Similarly, the remaining digits
can be interpreted by looking at the visualizations.

Visualizing the spectrogram of the audio data

What is a spectrogram?

A spectrogram is a visual way of representing the signal strength or “loudness” of a
signal over time at various frequencies or time steps present in a particular waveform. A
spectrogram gives a detailed view of audio. It represents amplitude, frequency, and time

in a single plot. Since spectrograms are continuous plots, they can be interpreted as an
image. Different spectrograms have different attributes on their axes and they are
usually different to interpret. In a Research and Development scenario, we make use of a
vocoder, which is an encoder that converts spectrograms back to audio using
parameters learned by machine learning. One great vocoder is the WaveNet vocoder
which is used in almost all Text to Speech architectures.

Here, we will be using MFCC spectrograms, which are also called Mel spectrograms.

A function which returns audio file for a mentioned digit
def get_audio_raw(digit = 0):

Audio Sample Directory
sample = np.random.randint(1, 10)

Index of Audio
index = np.random.randint(1, 5)

Modified file location
if sample < 10:
file = f"data/0{sample}/{digit}_0{sample}_{index}.wav"

else:
file = f"data/{sample}/{digit}_{sample}_{index}.wav"

Get Audio from the location
data, sample_rate = librosa.load(file)

Return audio
return data, sample_rate

Extracting features from the audio file

Mel-frequency cepstral coefficients (MFCCs) Feature Extraction

MFCCs are usually the final features used in many machine learning models trained on
audio data. They are usually a set of mel coefficients defined for each time step through
which the raw audio data can be encoded. So for example, if we have an audio sample
extending for 30 time steps, and we are defining each time step by 40 Mel Coefficients,
our entire sample can be represented by 40 * 30 Mel Coefficients. And if we want to
create a Mel Spectrogram out of it, our spectrogram will resemble a 2-D array of 40

horizontal rows and 30 vertical columns.

In this time step, we will first extract the Mel Coefficents for each audio file and add
them to our dataset.

e extract_features :Returns the MFCC extracted features for an audio file.

e process_and_create_dataset : Iterate through the audio of each digit, extract
the features using the extract_features() function, and append the data into a
DataFrame.

Creating a function that extracts the data from audio files

Will take an audio file as input and return extracted features using MEL_F
def extract_features(file):

Load audio and its sample rate
audio, sample_rate = librosa.load(file)

Extract features using mel-frequency coefficient
extracted_features = librosa.feature.mfcc(y = audio,
sr = sample_rate,
n_mfcc = 40)

Scale the extracted features
extracted_features = np.mean(extracted_features.T, axis = 0)

Return the extracted features
return extracted_features
def preprocess_and_create_dataset():

Path of the folder where the audio files are present
root_folder_path = "data/"

Empty List to create dataset
dataset = []

Iterating through folders where each folder has the audio of each digi
for folder in tqdm(range(1, 11)):

if folder < 10:

Path of the folder
folder = os.path.join(root_folder_path, "0" + str(folder))

else:
folder = os.path.join(root_folder_path, str(folder))

Iterate through each file of the present folder
for file in tqdm(os.listdir(folder)):

Path of the file
abs_file_path = os.path.join(folder, file)

Pass path of file to the extracted_features() function to crec
extracted_features = extract_features(abs_file_path)

Class of the audio, i.e., the digit it represents
class_label = filel0]

Append a list where the feature represents a column and class
dataset.append([extracted_features, class_labell)

After iterating through all the folders, convert the list to a DataFre
return pd.DataFrame(dataset, columns = ['features', 'class'l)

Now. let's create the dataset using the defined function

Create the dataset by calling the function
dataset = preprocess_and_create_dataset()

| gjl@ [00:00<?, ?it/s]
| gjée@ [00:00<?, ?it/s]
8% | I
| 39/500 [00:00<00:01, 386.48it/s]
|12§/|W 448.50it/s]
“T35/500 [00: 000000, 464 581¢/5)
"190/500 100: 0020000, 485201 /e ||
B T TR
203500 toosoocooo0 soosoepr '8’ oo
Cason ooocooron, soorosseyar T

7o I T T T I A T L

A | 396/500 [00:00<00:00, 504.11it/s]
SO | L
NN | 447/500 [00:00<00:00, 489.15it/s]

Lo6% [T T LT LT
I | 500/500 [00:01<00:00, 478.82it/s]
10% | I
| 1/10 [00:01<00:09, 1.05s/it]
0% |
| /500 [00:00<?, ?it/s]
10 | NG
| 50/500 [00:00<00:00, 492.31it/s]
20% | I
| 100/500 [00:00<00:00, 422.51it/s]
24" [T
| 144/500 [00:00<00:00, 427.66it/s]
3% [TTTTTITIT I T T I T
| 188/500 [00:00<00:00, 409.86it/s]
A7 TP T T I T I T T T T T T I T I T T T T
| 235/500 [00:00<00:00, 429.31it/s]
S I T T T
| 286/500 [00:00<00:00, 451.74it/s]
67 | I O LTI
| 335/500 [00:00<00:00, 461.59it/s]

s I T T I T A T T LT L

i | 384/500 [00:00<00:00, 469.04it/s]
SO | L
LI L | 432/500 [00:00<00:00, 458.65it/s]

R RN RN AN AN RN AN AR RNAN RN RNA RN RN ARNAN RN AN AN RN AN RN RNARNRRARNARAAE
I | 500/500 [00:01<00:00, 437.92it/s]
2| TTIT LT LT IL LI LT
| 2/10 [00:02<00:08, 1.11s/it]
0% |
| 9/500 [00:00<?, ?it/s]
11% | I
| 54/500 [00:00<00:00, 539.16it/s]
e AR RN RN ARNRARNARNRA
| 108/500 [00:00<00:00, 508.57it/s]

"155/500 00:00<00:00, 307355t/
N —

27500 oo:ooco0-o0, saorserer ...

R T

OB RN AR RRNNAARRRNN AN ARRNNNANARRNNNNRARRRNNNARRRRANNRRRRNARNRRRRRAY

| | | 379/500 [00:00<00:00, 530.92it/s]
AN NN NANANANANANANANANANANANANNNRNRNNRNRNNNNNNNRNNNNNNNRNNRNANAAE
HRRRRRREEEN | 434/500 [00:00<00:00, 535.02it/s]

30 looeme0ier, o
| gjfla(/)@ [00:00<?, ?it/s]
9% | I
| 43/500 [00:00<00:01, 426.54it/s]
757/500 [00: 00200100, £90..501¢/5
7145/500. 100:00700:00, 302.0511/5)
N T —
N T e —
T e ——
R ——

70 T T T T T T T C T T T LTI T L

nnl | 393/500 [00:00<00:00, 408.63it/s]
88 T I T T T
L L | 440/500 [00:00<00:00, 425.70it/s]

I oy e —
| gjfla(/)@ [00:00<?, ?it/s]
9% | I
| 46/500 [00:00<00:00, 454.45it/s]
767/500 [00: 00200100, 451.01¢/5
*147/500 100:00-00:00, 205, 2011/5)
157/500 100:00500:00r 450301t/ S)
N T T —
R —
3491500 to0zcooaro0, ozt T

#9 L

[T | 395/500 [00:00<00:00, 427.30it/s]
89 | L
[LLLLITITILTLT | 444/500 [00:00<00:00, 444.93it/s]

| gjflae@ [00:00<?, ?it/s]

7% | I
| 37/500 [00:00<00:01, 356.08it/s]
|13§/'W01, 344.75it/s]
“T02/300" 100: 000001, 362.201/s]

[ERRARARANANANANANARANANARANANANARNNRNRNRRNRNNNRNRNNNNNNNNRNNNRNAAE

[| 393/500 [00:00<00:00, 458.69it/s]
R R RN RN AR RRARNARARRARRRRARRRRN AR RN AR AR ARNARRRRARNARARRARNARARRARARAE
T | 440/500 [00:01<00:00, 461.60it/s]

Cono tonoottoron i —
| gfé@@ [00:00<?, ?it/s]

%% | I
| 46/500 [00:00<00:00, 458.99it/s]
| 52/500. [64:00%08:08; 426.601/5]
(e T, e
STy —
Ry E—
Cooorsee Tooroomeron szt T .
|7§§§W
&W
|73710[00:07<00:03,1.09s/it]—

| gjrlmo [00:00<?, ?it/s]
9% | I
| 46/500 [00:00<00:00, 458.20it/s]
| 57/568. 10070020060, #84.501¢/s]
(o oo, GEE]
'01/300 (000020000, 303.60trer T
B imir o o E——
C0nyoee Tooroocseoo, sensert T .
Fg;ém
%W
| gjtlsoo [00:00<?, ?it/s]
10°% | G
| 48/500 [00:00<00:00, 468.84it/s]
| 133W377 .54it/s]
1377560 [oa:0000:08, 395, 441t/51
'158/500 100:00200:000 420 2ot rl
Wy —
B miveri e e
3rovo00 (00:00c00:00, a7 tsirer T
F‘;;W
| gjtlsoo [00:00<?, ?it/s]
10°% | G
| 50/500 [00:00<00:00, 493.10it/s]
|22;$W465.601t/s]
5 e e, G
Bty e ey m—

NN RN RN NN NN RN RN N RN RN RN NN RN RN NN RRNRAAN

| 243/500 [00:00<00:00, 416.78it/s]

57 L L

| 287/500 [00:00<00:00, 404.06it/s]

TR N RN AN AN N NN AN RAN RN RN NN NANRN RN NN RN RNNRNRANRNRNNRANRNRAAN

| 338/500 [00:00<00:00, 433.58it/s]

R AR AR AR A RN ARNARA RN AR AR AR AR AR A RN AR AR A RN RN AR ARNARARRARRARARRARARAE
[| | 383/500 [00:01<00:00, 288.42it/s]

N RN RN RN RN NN RN RN N RN RN RN NN RN RN NN NANRNRNNNN NN RN RN NRNRRARANRARAN
CLLLLLLLD | 419/500 [00:01<00:00, 302.23it/s]

91| L
IREREERERERRERE] | 456/500 [00:01<00:00, 317.44it/s]

RN RN A AN RAN RN NN NANAN RN RNR AN NN RNRNNRAN NN NN RANRNRANRNNANRANRNRANAN
I | 500/500 [00:01<00:00, 360.03it/s]

A RR R A RN AR RN AN AR RN AR AR A RN AR AR AR AR AR AR AR RRARRARRRRARNRRRRRARARE
I | 10/10 [00:11<00:00, 1.12s/it]

View first 5 rows of the data

View the head of the DataFrame
dataset.head()

features class

0 [-634.2726, 60.718662, 19.634466, 54.73299, 31... 3
1 [-615.57446, 117.79709, 20.75868, 23.231092, 2... 2
2 [-632.2322, 63.031258, 15.4895, 50.909485, 32.... 3
3 [-619.4891, 70.50161, 7.5741982, 47.71054, 36.... 3
4 [-611.01135, 110.0762, 19.848354, 13.996176, 8... 4

dataset.shape

(5000, 2)

dataset.describe().T

count unique top freq
features 5000 5000 [-634.2726, 60.718662, 19.634466, 54.73299, 31... 1
class 5000 10 3 500

Storing the class as int
dataset['class'] = [int(x) for x in dataset['class'l]]

Check the frequency of classes in the dataset
dataset['class'].value_counts()

3 500
2 500
4 500
0 500
7 500
8 500
5 500
1 500
6 500
9 500
Name: count, dtype: int64

Visualizing the Mel Frequency Cepstral Coefficients Using a
Spectrogram

e draw_spectrograms :From the Mel Coefficients we are extracting for a particular
audio, this function is creating the 2-D graph of those coefficients with the X-axis
representing time and the Y-axis shows the corresponding Mel coefficients in that
time step.

A function which returns MFCC
def draw_spectrograms(audio_data, sample_rate):

Extract features

extracted_features = librosa.feature.mfcc(y = audio_data,
sr = sample_rate,
n_mfcc = 40)

Return features without scaling
return extracted_features

The very first MFCC coefficient (Oth coefficient) does not provide information about the
overall shape of the spectrum. It simply communicates a constant offset or the addition
of a constant value to the full spectrum. As a result, when performing classification,
many practitioners will disregard the initial MFCC. In the images, you can see those
represented by blue pixels.

We can plot the MFCCs, but it's difficult to tell what kind of signal is hiding behind such
representation.

Creating subplots
fig, ax = plt.subplots(5, 2, figsize = (15, 30))

Initializing row and column variables for subplots
row = 0
column = 0

for digit in range(10):

Get the audio of different classes (0-9)

audio_data, sample_rate = get_audio_raw(digit)

Extract their MFCC
mfcc = draw_spectrograms(audio_data, sample_rate)
print(f"Shape of MFCC of audio digit {digit} ———> ", mfcc.shape)

Display the plots and its title
ax[row,column].set_title(f"MFCC of audio class {digit} across time")
librosa.display.specshow(mfcc, sr = 22050, ax = ax[row, column])

Set X-labels and Y-labels
ax[row,column].set_xlabel("Time")
ax[row,column] .set_ylabel("MFCC Coefficients")

Conditions for positioning of the plots

if column == 1:
column = 0@
row += 1
else:
column+=1

plt.tight_layout(pad = 3)
plt.show()

Shape of MFCC of audio digit
Shape of MFCC of audio digit
Shape of MFCC of audio digit
Shape of MFCC of audio digit
Shape of MFCC of audio digit

-——> (40, 25)
-—> (40, 24)
—> (40, 23)
—-——> (40, 21)
-——> (40, 21)

OCo~NOOUT A, WNREOS
|
|
|
\Y

Shape of MFCC of audio digit (40, 22)
Shape of MFCC of audio digit 6 ———> (40, 40)
Shape of MFCC of audio digit 7 ———> (40, 26)
Shape of MFCC of audio digit 8 ———> (40, 23)
Shape of MFCC of audio digit 9 -—-—> (40, 24)

MFCC of audio class 0 across time MFCC of audio class 1 across time

MFCC Coefficients
MFCC Coefficients

MFCC of audio class 2 across time MFCC of audio class 3 across time

MFCC Coefficients

o)
E
2
S
E
Q
E
=

MFCC of audio class 4 across time MFCC of audio class 5 across time

MFCC Coefficients
MFCC Coefficients

MFCC of audio class 6 across time MFCC of audio class 7 across time

MFCC Coefficients
MFCC Coefficients

MFCC Coefficients

In [25]:

Out[25]:

MFCC of audio class 8 across time MFCC of audio class 9 across time

MFCC Coefficients

Time

Visual Inspection of MFCC Spectrograms:

On inspecting them visually, we can see that there are a lot of deviations from the
spectrograms of one audio to another. There are a lot of tiny rectangles and bars whose
positions are unique to each audio. So, the Artificial Neural Network should be able to

perform decently in identifying these audios.

Perform Train-Test-Split

e Split the data into train and test sets

Import train_test_split function
from sklearn.model_selection import train_test_split

np.array(dataset['features'].to_list())
np.array(dataset['class'].to_list())

X
Y

Create train set and test set
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size = 0.75,

Checking the shape of the data
X_train.shape

(3750, 40)

Modelling

e Create an artificial neural network to recognize the digit.

About the libraries:

Keras : Keras is an open-source deep-learning library in Python. Keras is popular

because the APl was clean and simple, allowing standard deep learning models to

be defined, fit, and evaluated in just a few lines of code.

Sklearn :
Simple and efficient tools for predictive data analysis

Accessible to everybody, and reusable in various contexts

Built on NumPy, SciPy, and matplotlib

Open source, commercially usable

Import necessary libraries for building the model

To
from
from

To
from

To
from

To
from
from

create an ANN model
tensorflow.keras.models import Sequential
tensorflow.keras.layers import Dense, Dropout

create a checkpoint and save the best model
tensorflow.keras.callbacks import ModelCheckpoint

load the model
tensorflow.keras.models import load_model

evaluate the model
sklearn.metrics import classification_report, confusion_matrix
sklearn.preprocessing import LabelBinarizer

Model Creation

Why are we using ANN's?

When we are converting audios to their corresponding spectrograms, we will have
similar spectrograms for similar audios irrespective of who the speaker is, and what is
their pitch and timber like. So local spatiality is never going to be a problem. So having
convolutional layers on top of our fully connected layers is just adding to our
computational redundancy.

We will use a Sequential model with multiple connected hidden layers, and an output
layer that returns a single, continuous value.

e A Sequential model is a linear stack of layers. Sequential models can be created by
giving a list of layer instances.

e A dense layer of neurons is a simple layer of neurons in which each neuron receives
input from all of the neurons in the previous layer.

e The most popular function employed for hidden layers is the rectified linear
activation function, or ReLU activation function. It's popular because it's easy to use
and effective in getting around the limitations of other popular activation functions
like Sigmoid and Tanh.

Crete a Sequential Object
model = Sequential()

Add first layer with 100 neurons to the sequental object
model.add(Dense(100, input_shape = (40,), activation = 'relu'))

Add second layer with 100 neurons to the sequental object
model.add(Dense (100, activation = 'relu'))

Add third layer with 100 neurons to the sequental object
model.add(Dense (100, activation = 'relu'))

Output layer with 10 neurons as it has 10 classes
model.add(Dense(10, activation = 'softmax'))

/Users/obaozai/miniconda3/envs/jupyter/lib/python3.11/site-packages/keras/sr
c/layers/core/dense.py:87: UserWarning: Do not pass an " input_shape’/ input_
dim® argument to a layer. When using Sequential models, prefer using an "Inp
ut(shape) ™ object as the first layer in the model instead.

super().__init_ (activity_regularizer=activity_regularizer, sxkwargs)

Print Summary of the model
model.summary ()

Model: "sequential"

Layer (type) Output Shape Par
dense (Dense) (None, 100) 4
dense_1 (Dense) (None, 100) 10
dense_2 (Dense) (None, 100) 10
dense_3 (Dense) (None, 10) 1
Total params: 25,310 (98.87 KB)
Trainable params: 25,310 (98.87 KB)

Non-trainable params: 0 (0.00 B)

Compile the model

model.compile(loss = 'sparse_categorical_crossentropy',

metrics = ['accuracy'],

optimizer = ‘'adam')

Model Checkpoint & Training

Set the number of epochs for training

num_epochs = 100

Set the batch size for training
batch_size = 32

Fit the model

model.fit(X_train, Y_train, validation_data

= (X_test, Y_test), epochs

nun

Epoch 1/100

118/118 0s 1ms/step - accuracy: 0.2667 - loss: 7.4935 -
val_accuracy: 0.7568 - val_loss: 0.7217
Epoch 2/100

118/118 0s 635us/step
— val_accuracy: 0.7648 val_loss: 0.5980
Epoch 3/100

118/118 0s 622us/step — accuracy: 0.8566 - loss: 0.4161
- val_accuracy: 0.8888 - val_loss: 0.3074

Epoch 4/100

118/118 0s 6l4us/step — accuracy: 0.9175 - loss: 0.2538
- val_accuracy: 0.9192 - val_loss: 0.2091

Epoch 5/100

118/118 0s 608us/step — accuracy: 0.9293 - loss: 0.2207
- val_accuracy: 0.9328 - val_loss: 0.1806

Epoch 6/100

118/118 0s 617us/step — accuracy: 0.9426 - loss: 0.1679
- val_accuracy: 0.9744 - val_loss: 0.0909

Epoch 7/100

118/118 0s 613us/step — accuracy: 0.9602 - loss: 0.1277
— val_accuracy: 0.9736 - val_loss: 0.0909

Epoch 8/100

118/118 Os 632us/step — accuracy: 0.9538 - loss: 0.1300
— val_accuracy: 0.9536 - val_loss: 0.1094

Epoch 9/100

118/118 0s 612us/step - accuracy: 0.9761 - loss: 0.0727
- val_accuracy: 0.9728 - val_loss: 0.0870

Epoch 10/100

118/118 Os 612us/step — accuracy: 0.9660 - loss: 0.1024
— val_accuracy: 0.9512 - val_loss: 0.1381

Epoch 11/100

118/118 0s 643us/step — accuracy: 0.9610 - loss: 0.1195
- val_accuracy: 0.9568 - val_loss: 0.1174

Epoch 12/100

118/118 0s 662us/step — accuracy: 0.9666 — loss: 0.0967
- val_accuracy: 0.9760 - val_loss: 0.0782

Epoch 13/100

118/118 Os 670Qus/step — accuracy: 0.9760 - loss: 0.0724
- val_accuracy: 0.9776 - val_loss: 0.0634

Epoch 14/100

118/118 0s 628us/step — accuracy: 0.9755 - loss: 0.0676
- val_accuracy: 0.9760 - val_loss: 0.0663

Epoch 15/100

118/118 0s 665us/step — accuracy: 0.9781 - loss: 0.0695
— val_accuracy: 0.9856 - val_loss: 0.0445

Epoch 16/100

118/118 Os 617us/step — accuracy: 0.9821 - loss: 0.0448
— val_accuracy: 0.9704 - val_loss: 0.0880

Epoch 17/100

118/118 0s 668us/step - accuracy: 0.9630 - loss: 0.0904
- val_accuracy: 0.9784 - val_loss: 0.0765

Epoch 18/100

118/118 0s 658us/step — accuracy: 0.9617 — loss: 0.1092
— val_accuracy: 0.9672 — val_loss: 0.0964

Epoch 19/100

118/118 0s 652us/step — accuracy: 0.9672 - loss: 0.0845

loss: 0.5902

accuracy: 0.8055

- val_accuracy:

Epoch 20/100

. 9688

val_loss: 0.0750

118/118

- val_accuracy:

Epoch 21/100

. 9696

0s 649us/step
val_loss: 0.0861

118/118

- val_accuracy:

Epoch 22/100

. 9808

0s 730us/step
val_loss: 0.0583

118/118

- val_accuracy:

Epoch 23/100
118/118

. 9888

0s 670us/step
val_loss: 0.0402

- val_accuracy:

Epoch 24/100
118/118

.9576

0s 653us/step
val_Tloss: 0.1189

— val_accuracy:

Epoch 25/100
118/118

. 9600

0s 646us/step
val_loss: 0.1199

- val_accuracy:

Epoch 26/100
118/118

. 9904

@s 657us/step
val_loss: 0.0314

- val_accuracy:

Epoch 27/100
118/118

. 9768

0s 678us/step
val_Tloss: 0.0687

- val_accuracy:

Epoch 28/100
118/118

. 9728

0s 659us/step
val_loss: 0.0709

- val_accuracy:

Epoch 29/100
118/118

. 9720

0s 663us/step
val_loss: 0.0994

- val_accuracy:

Epoch 30/100
118/118

. 9312

0s 653us/step
val_loss: 0.2456

- val_accuracy:

Epoch 31/100

. 9680

0s 658us/step
val_loss: 0.0693

118/118

- val_accuracy:

Epoch 32/100

. 9824

0s 647us/step
val_Tloss: 0.0601

118/118

- val_accuracy:

Epoch 33/100

. 9600

0s 654us/step
val_loss: 0.1364

118/118

- val_accuracy:

Epoch 34/100
118/118

. 9840

0s 615us/step
val_loss: 0.0502

- val_accuracy:

Epoch 35/100
118/118

. 9680

0s 650us/step
val_Tloss: 0.0920

- val_accuracy:

Epoch 36/100
118/118

. 9880

0s 634us/step
val_loss: 0.0354

- val_accuracy:

Epoch 37/100
118/118

. 9808

0s 653us/step
val_loss: 0.0490

- val_accuracy:

Epoch 38/100

. 9224

0s 650us/step
val_loss: 0.2533

accuracy:

accuracy:

accuracy.:

accuracy:

accuracy.:

accuracy.

accuracy:

accuracy.:

accuracy:

accuracy:

accuracy.:

accuracy:

accuracy.:

accuracy.:

accuracy:

accuracy.:

accuracy:

accuracy:

. 9802

.9813

. 9707

. 9846

. 9799

. 9844

.9818

.9714

. 9763

. 9810

. 9845

.9853

. 9821

. 9779

. 9785

. 9753

. 9927

.9873

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

. 0590

. 0571

. 0819

. 0439

.0588

. 0447

. 0493

.0733

. 0817

. 0548

. 0548

.0378

. 0522

0727

.0729

.0798

. 0204

. 0415

118/118

- val_accuracy:

Epoch 39/100
118/118

. 9744

0s 625us/step
val_loss: 0.0759

- val_accuracy:

Epoch 40/100
118/118

. 9848

0s 640Qus/step
val_loss: 0.0512

— val_accuracy:

Epoch 41/100
118/118

. 9824

0s 622us/step
val_loss: 0.0548

- val_accuracy:

Epoch 42/100
118/118

. 9824

0s 663us/step
val_loss: 0.0596

- val_accuracy:

Epoch 43/100
118/118

. 9880

0s 656us/step
val_Tloss: 0.0545

- val_accuracy:

Epoch 44/100
118/118

. 9832

0s 619us/step
val_loss: 0.0566

- val_accuracy:

Epoch 45/100
118/118

. 9800

0s 645us/step
val_loss: 0.0604

- val_accuracy:

Epoch 46/100

. 9840

0s 636us/step
val_loss: 0.0454

118/118

- val_accuracy:

Epoch 47/100

. 9808

0s 632us/step
val_loss: 0.0650

118/118

- val_accuracy:

Epoch 48/100

.9784

0s 618us/step
val_Tloss: 0.0629

118/118

- val_accuracy:

Epoch 49/100
118/118

. 9848

0s 641lus/step
val_loss: 0.0464

- val_accuracy:

Epoch 50/100
118/118

. 9880

0s 660us/step
val_loss: 0.0431

- val_accuracy:

Epoch 51/100
118/118

. 9760

0s 647us/step
val_loss: 0.0812

- val_accuracy:

Epoch 52/100
118/118

. 9872

0s 631lus/step
val_loss: 0.0442

- val_accuracy:

Epoch 53/100
118/118

. 9864

0s 642us/step
val_Tloss: 0.0346

- val_accuracy:

Epoch 54/100
118/118

. 9840

0s 655us/step
val_loss: 0.0516

- val_accuracy:

Epoch 55/100
118/118

. 9912

0s 637us/step
val_loss: 0.0277

- val_accuracy:

Epoch 56/100
118/118

. 9832

0s 649us/step
val_loss: 0.0671

- val_accuracy:

. 9888

0s 624us/step
val_loss: 0.0358

accuracy.

accuracy:

accuracy.:

accuracy.:

accuracy:

accuracy.:

accuracy:

accuracy:

accuracy.:

accuracy:

accuracy.:

accuracy.:

accuracy:

accuracy.:

accuracy:

accuracy:

accuracy.:

accuracy:

accuracy.:

. 9801

. 9803

. 9826

. 9904

. 9812

. 9912

. 9928

. 9753

. 9889

.9939

. 9915

. 9898

. 9867

. 9912

. 9949

.9938

. 9890

. 9921

. 9857

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

. 0633

. 0507

. 0510

. 0286

. 0507

. 0305

.0198

.1101

. 0245

. 0156

.0196

. 0294

. 0357

. 0253

.0138

0177

. 0252

. 0239

. 0349

Epoch 57/100
118/118

- val_accuracy:
Epoch 58/100
118/118

0.9848

@s 659us/step
- val_loss: 0.0539

- val_accuracy:
Epoch 59/100
118/118

0.9864

0s 626us/step
— val_loss: 0.0517

- val_accuracy:
Epoch 60/100

0.9880

0s 645us/step
— val_loss: 0.0529

118/118
- val_accuracy:
Epoch 61/100

0.9864

0s 666us/step
- val_loss: 0.0355

118/118
- val_accuracy:
Epoch 62/100

0.9888

0s 647us/step
- val_loss: 0.0329

118/118
- val_accuracy:
Epoch 63/100

0.9928

0s 628us/step
— val_loss: 0.0278

118/118
- val_accuracy:
Epoch 64/100

118/118

0.9904

0s 649us/step
- val_loss: 0.0352

val_accuracy: 0.
Epoch 65/100
118/118

9848 -

0s 1ms/step -
val_loss: 0.0600

- val_accuracy:
Epoch 66/100
118/118

0.9896

0s 688us/step
— val_loss: 0.0352

- val_accuracy:
Epoch 67/100
118/118

0.9720

0s 659us/step
— val_loss: 0.0952

- val_accuracy:
Epoch 68/100
118/118

0.9848

0s 618us/step
— val_loss: 0.0545

- val_accuracy:
Epoch 69/100
118/118

0.9912

0s 613us/step
- val_loss: 0.0274

- val_accuracy:
Epoch 70/100
118/118

0.9872

0s 625us/step
— val_loss: 0.0626

- val_accuracy:
Epoch 71/100
118/118

0.9928

0s 615us/step
— val_loss: 0.0291

- val_accuracy:
Epoch 72/100

0.9920

0s 629us/step
— val_loss: 0.0261

118/118

e-04 - val_accuracy: 0.

Epoch 73/100

0s 629us/step

— accuracy.:

- accuracy:

— accuracy:

- accuracy:

- accuracy:

— accuracy:

- accuracy:

accuracy: 0.

— accuracy.:

- accuracy:

— accuracy:

- accuracy:

- accuracy:

— accuracy:

- accuracy:

— accuracy:

9936 - val_loss: 0.0246

118/118

e-04 - val_accuracy: 0.

Epoch 74/100

0s 614us/step

— accuracy.:

9928 - val_loss: 0.0259

118/118

e-04 - val_accuracy: 0.

Epoch 75/100

0s 628us/step

- accuracy:

9952 - val_loss: 0.0247

118/118

0s 640us/step

— accuracy:

0

. 9883

. 9903

. 9986

. 9913

. 9885

. 9972

. 9985

9927 -

0

. 9921

.9988

. 9913

. 9968

. 9963

. 9908

. 9947

. 0000

. 0000

. 0000

. 0000

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

0.0442

0.0220

0.0066

0.0349

0.0391

0.0056

0.0057

.0181 -

0.0228

0.0040

0.0272

0.0085

0.0119

0.0244

0.0121

6.0500

2.9582

1.7942

1.3299

e-04 - val_accuracy:

Epoch 76/100

.9936 - val_loss: 0.0259

118/118

e-04 - val_accuracy:

Epoch 77/100

118/118

e-04 - val_accuracy:

Epoch 78/100

118/118

e-04 - val_accuracy:

Epoch 79/100
118/118

e-04 - val_accuracy:

Epoch 80/100
118/118

e-04 - val_accuracy:

Epoch 81/100
118/118

e-04 - val_accuracy:

Epoch 82/100
118/118

e-05 - val_accuracy:

Epoch 83/100
118/118

e-04 - val_accuracy:

Epoch 84/100
118/118

e-05 - val_accuracy:

Epoch 85/100
118/118

e-05 - val_accuracy:

Epoch 86/100
118/118

e-05 - val_accuracy:

Epoch 87/100

118/118

e-05 - val_accuracy:

Epoch 88/100

118/118

e-05 - val_accuracy:

Epoch 89/100

118/118

e-05 - val_accuracy:

Epoch 90/100
118/118

e-05 - val_accuracy:

Epoch 91/100
118/118

e-05 - val_accuracy:

Epoch 92/100
118/118

e-05 - val_accuracy:

Epoch 93/100
118/118

e-05 - val_accuracy:

Epoch 94/100

0s 614us/step — accuracy:
.9928 - val_loss: 0.0261

0s 624us/step — accuracy:
.9928 - val_loss: 0.0256

0s 6llus/step — accuracy:
.9928 - val_loss: 0.0265

0s 624us/step - accuracy:
.9928 - val_loss: 0.0257

0s 624us/step - accuracy:
.9928 - val_loss: 0.0258

@s 630us/step - accuracy:
.9928 - val_loss: 0.0254

0s 631us/step - accuracy:
.9928 - val_loss: 0.0266

0s 623us/step — accuracy:
.9936 - val_loss: 0.0261

0s 624us/step — accuracy:
.9928 - val_loss: 0.0256

0s 620us/step — accuracy:
.9936 — val_loss: 0.0268

0s 6llus/step — accuracy:
.9936 - val_loss: 0.0264

0s 619us/step - accuracy:
.9944 - val_loss: 0.0261

0s 619us/step - accuracy:
.9920 - val_loss: 0.0262

@s 6l1llus/step - accuracy:
.9928 - val_loss: 0.0262

0s 629us/step - accuracy:
.9928 - val_loss: 0.0275

0s 623us/step — accuracy:
.9928 - val_loss: 0.0270

0s 624us/step — accuracy:
.9928 - val_loss: 0.0269

0s 623us/step — accuracy:
.9936 — val_loss: 0.0269

. 0000

. 0000

. 0000

. 0000

. 0000

. 0000

. 0000

. 0000

. 0000

. 0000

. 0000

. 0000

. 0000

. 0000

. 0000

. 0000

. 0000

. 0000

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

.7931

. 7376

.4021

.1809

. 1499

. 2501

.3003

. 0386

. 9002

.4360

.6205

. 4788

. 8237

. 9803

.5340

. 2406

. 2389

.1984

118/118

e-05 - val_accuracy:
Epoch 95/100
118/118

0s 609us/step — accuracy:

.9936 - val_loss: 0.0274

e-05 - val_accuracy:
Epoch 96/100
118/118

0s 620us/step - accuracy:

.9936 - val_loss: 0.0281

e-05 - val_accuracy:
Epoch 97/100
118/118

0s 616us/step — accuracy:

.9936 - val_loss: 0.0254

e-05 - val_accuracy:
Epoch 98/100
118/118

@s 615us/step - accuracy:

.9936 - val_loss: 0.0272

e—-05 - val_accuracy:
Epoch 99/100
118/118

0s 626us/step — accuracy:

.9936 - val_loss: 0.0267

e-05 - val_accuracy:
Epoch 100/100
118/118

0s 628us/step — accuracy:

.9936 - val_loss: 0.0262

e-05 - val_accuracy:

0s 627us/step — accuracy:

0.9944 - val_loss: 0.0271

<keras.src.callbacks.history.History at 0x35487e5d0>

Model Evaluation

[np.argmax(i) for i in Y_pred]

Make predictions on the test set
Y_pred = model.predict(X_test)
Y_pred =

40/40

Set style as dark

sns.set_style("dark")

Set figure size
plt.figure(figsize

Plot the title

@s 566us/step

(15, 8))

1

. 0000

. 0000

. 0000

. 0000

. 0000

. 0000

. 0000

plt.title("CONFUSION MATRIX FOR MNIST AUDIO PREDICTION")

Confusion matrix
cm =

Plot the confusion matrix as heatmap

sns.heatmap(cm, annot

= True, cmap = "cool", fmt =

Set X-label and Y-label
plt.xlabel("ACTUAL VALUES")
plt.ylabel("PREDICTED VALUES")

Show the plot
plt.show()

Print the metrics

print(classification_report(Y_test, Y_pred))

confusion_matrix([int(x) for x in Y_test], Y_pred)

'g', cbar

loss:

loss:

loss:

loss:

loss:

loss:

loss:

False)

. 4045

. 4869

. 9503

. 1865

4272

. 9901

. 8726

CONFUSION MATRIX FOR MNIST AUDIO PREDICTION

PREDICTED VALUES

ACTUAL VALUES

precision recall fl-score support

0 0.99 0.98 0.98 124

1 0.99 1.00 1.00 123

2 0.98 0.99 0.99 115

3 0.99 0.99 0.99 121

4 1.00 1.00 1.00 136

5 0.99 1.00 1.00 126

6 1.00 1.00 1.00 127

7 0.99 1.00 1.00 121

8 1.00 1.00 1.00 129

9 1.00 0.98 0.99 128
accuracy 0.99 1250
macro avg 0.99 0.99 0.99 1250
weighted avg 0.99 0.99 0.99 1250

Observations:

e From the confusion matrix, we can observe that most of the observations are
correctly identified by the model.

e In very few cases, the model is not able to identify the correct digit. For example, 9
observations are 0 but the model has predicted them as 2.

e The model has given a great performance with 99% recall, precision and F1-score.

