Audio MNIST Digit Recognition

Context

In the past decades, significant advances have been achieved in the area of audio recognition and a lot of research is going on globally to recognize audio data or speech using Deep Learning. The most common use case in this field is converting audio to spectrograms and vice versa.

Audio in its raw form is usually a wave and to capture that using a data structure, we need to have a huge array of amplitudes even for a very short audio clip. Although it depends on the sampling rate of the sound wave, this structured data conversion for any audio wave is very voluminous even for low sampling rates. So it becomes a problem to store and computationally very expensive to do even simple calculations on such data.

One of the best economical alternatives to this is using spectrograms. Spectrograms are created by doing Fourier or Short Time Fourier Transforms on sound waves. There are various kinds of spectrograms but the ones we will be using are called MFCC spectrograms. To put it in simple terms, a spectrogram is a way to visually encapsulate audio data. It is a graph on a 2-D plane where the X-axis represents time and the Y-axis represents Mel Coefficients. But since it is continuous on a 2-D plane, we can treat this as an image.

Objective

The objective here is to build an Artificial Neural Network that can look at Mel or MFCC spectrograms of audio files and classify them into 10 classes. The audio files are recordings of different speakers uttering a particular digit and the corresponding class to be predicted is the digit itself.

Dataset

The dataset we will use is the **Audio MNIST dataset**, which has audio files (having .wav extension) stored in 10 different folders. Each folder consists of these digits spoken by a particular speaker.

Understanding the required packages

- Librosa: Librosa is a Python package that helps in dealing with audio data. **librosa.display** visualizes and displays the audio data using Matplotlib. Similarly, there exists a collection of submodules under librosa that provides various other functionalities. **Run the command in the below cell to install the library**.
- IPython.display: Display is a public API to display the tools available in Ipython. In this case study, we will create an audio object to display the digits in the MNIST audio data.
- tqdm: tqdm is a Python package that allows us to add a progress bar to our application. This package will help us in iterating over the audio data.

Importing the necessary libraries and loading the data

```
import librosa
import librosa.display as dsp
from IPython.display import Audio

# For Data Preprocessing
import pandas as pd
import numpy as np
import os

# For Data Visualization
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm

#The data is provided as a zip file
import zipfile
import os
```

In [2]: sns.set_style("dark")

Check some of the audio samples

The below function called "get_audio" takes a digit as an argument and plots the audio wave and returns the audio for a given digit.

Let's understand the functioning of some of the new functions used to create the get_audio() function.

• wav: .wav is a file format like .csv which stores the raw audio format. We will load the .wav file using the librosa package.

- dsp.waveshow(): It visualizes the waveform in the time domain. This method creates a plot that alternates between a raw samples-based view of the signal and an amplitude-envelope view of the signal. The "sr" parameter is the sampling rate, i.e., samples per second.
- Audio(): From the lpython package, we can create an audio object.

```
In [33]: def get_audio(digit = 0):
             # Audio Sample Directory
             sample = np.random.randint(1, 10)
             # Index of Audio
             index = np.random.randint(1, 5)
             # Modified file location
             if sample < 10:</pre>
                 file = f"data/0{sample}/{digit}_0{sample}_{index}.wav"
             else:
                 file = f"data/{sample}/{digit}_{sample}_{index}.wav"
             # Get Audio from the location
             # Audio will be automatically resampled to the given rate (default sr =
             data, sample_rate = librosa.load(file)
             # Plot the audio wave
             dsp.waveshow(data, sr = sample_rate)
             plt.show()
             # Show the widget
             return Audio(data = data, rate = sample_rate)
```

The history saving thread hit an unexpected error (OperationalError('attempt to write a readonly database')). History will not be written to the database.

```
In [4]: # Show the audio and plot of digit 0
get_audio(0)
```


In [5]: # Show the audio and plot of digit 1
 get_audio(1)

In [6]: # Show the audio and plot of digit 2
 get_audio(2)

In [7]: # Show the audio and plot of digit 3
get_audio(3)

In [8]: # Show the audio and plot of digit 4
 get_audio(4)

In [9]: # Show the audio and plot of digit 5
 get_audio(5)

In [10]: # Show the audio and plot of digit 6
get_audio(6)

In [11]: # Show the audio and plot of digit 7
get_audio(7)

In [12]: # Show the audio and plot of digit 8
get_audio(8)

In [13]: # Show the audio and plot of digit 9
get_audio(9)

Observations:

- The X-axis represents time and Y-axis represents the amplitude of the vibrations. The intuition behind the Fourier Transform is that any wave can be broken down or deconstructed as a sum of many composite sine waves. Since these are composed of sine waves, they are symmetric about the time axis, i.e, they extend equally above and below the time axis at a particular time.
- From the various audio plots ranging from 0 to 9, we can observe the amplitude at a given point in time. For example, when we say "Zero", the "Z" sound has low amplitude and the "ero" sound has higher amplitude. Similarly, the remaining digits can be interpreted by looking at the visualizations.

Visualizing the spectrogram of the audio data

What is a spectrogram?

A spectrogram is a visual way of representing the signal strength or "loudness" of a signal over time at various frequencies or time steps present in a particular waveform. A spectrogram gives a detailed view of audio. It represents amplitude, frequency, and time

in a single plot. Since spectrograms are continuous plots, they can be interpreted as an image. Different spectrograms have different attributes on their axes and they are usually different to interpret. In a Research and Development scenario, we make use of a vocoder, which is an encoder that converts spectrograms back to audio using parameters learned by machine learning. One great vocoder is the WaveNet vocoder which is used in almost all Text to Speech architectures.

Here, we will be using **MFCC** spectrograms, which are also called **Mel** spectrograms.

```
In [14]: # A function which returns audio file for a mentioned digit
def get_audio_raw(digit = 0):
    # Audio Sample Directory
    sample = np.random.randint(1, 10)

# Index of Audio
    index = np.random.randint(1, 5)

# Modified file location
    if sample < 10:
        file = f"data/0{sample}/{digit}_0{sample}_{index}.wav"

else:
        file = f"data/{sample}/{digit}_{sample}_{index}.wav"

# Get Audio from the location
    data, sample_rate = librosa.load(file)

# Return audio
    return data, sample_rate</pre>
```

Extracting features from the audio file

Mel-frequency cepstral coefficients (MFCCs) Feature Extraction

MFCCs are usually the final features used in many machine learning models trained on audio data. They are usually a set of mel coefficients defined for each time step through which the raw audio data can be encoded. So for example, if we have an audio sample extending for 30 time steps, and we are defining each time step by 40 Mel Coefficients, our entire sample can be represented by 40 * 30 Mel Coefficients. And if we want to create a Mel Spectrogram out of it, our spectrogram will resemble a 2-D array of 40 horizontal rows and 30 vertical columns.

In this time step, we will first extract the Mel Coefficients for each audio file and add them to our dataset.

extract features: Returns the MFCC extracted features for an audio file.

• process_and_create_dataset : Iterate through the audio of each digit, extract the features using the extract_features() function, and append the data into a DataFrame.

Creating a function that extracts the data from audio files

```
In [15]: # Will take an audio file as input and return extracted features using MEL F
         def extract_features(file):
             # Load audio and its sample rate
             audio, sample_rate = librosa.load(file)
             # Extract features using mel-frequency coefficient
             extracted_features = librosa.feature.mfcc(y = audio,
                                                        sr = sample_rate,
                                                        n \text{ mfcc} = 40
             # Scale the extracted features
             extracted features = np.mean(extracted features.T, axis = 0)
             # Return the extracted features
             return extracted features
         def preprocess and create dataset():
             # Path of the folder where the audio files are present
             root_folder_path = "data/"
             # Empty List to create dataset
             dataset = []
             # Iterating through folders where each folder has the audio of each digi
             for folder in tqdm(range(1, 11)):
                 if folder < 10:</pre>
                     # Path of the folder
                     folder = os.path.join(root_folder_path, "0" + str(folder))
                 else:
                     folder = os.path.join(root_folder_path, str(folder))
                 # Iterate through each file of the present folder
                 for file in tqdm(os.listdir(folder)):
                     # Path of the file
                     abs_file_path = os.path.join(folder, file)
                     # Pass path of file to the extracted_features() function to crea
                     extracted_features = extract_features(abs_file_path)
                     # Class of the audio, i.e., the digit it represents
                     class_label = file[0]
```

```
# Append a list where the feature represents a column and class
dataset.append([extracted_features, class_label])

# After iterating through all the folders, convert the list to a DataFra
return pd.DataFrame(dataset, columns = ['features', 'class'])
```

Now. let's create the dataset using the defined function

```
In [16]: # Create the dataset by calling the function
dataset = preprocess_and_create_dataset()
```

```
0%|
| 0/10 [00:00<?, ?it/s]
 0%|
| 0/500 [00:00<?, ?it/s]
| 39/500 [00:00<00:01, 386.48it/s]
18%
| 89/500 [00:00<00:00, 448.50it/s]
28%
| 138/500 [00:00<00:00, 464.58it/s]
38%||
| 190/500 [00:00<00:00, 485.29it/s]
48%|
| 240/500 [00:00<00:00, 489.02it/s]
59%
293/500 [00:00<00:00, 500.50it/s]
| 344/500 [00:00<00:00, 500.03it/s]
79%|
                        | 396/500 [00:00<00:00, 504.11it/s]
89%||
                        | 447/500 [00:00<00:00, 489.15it/s]
100%||
                       | 500/500 [00:01<00:00, 478.82it/s]
10%
| 1/10 [00:01<00:09, 1.05s/it]
 0%|
| 0/500 [00:00<?, ?it/s]
10%|
| 50/500 [00:00<00:00, 492.31it/s]
20%
| 100/500 [00:00<00:00, 422.51it/s]
29%
| 144/500 [00:00<00:00, 427.66it/s]
38%|
| 188/500 [00:00<00:00, 409.86it/s]
47%
| 235/500 [00:00<00:00, 429.31it/s]
57%
| 286/500 [00:00<00:00, 451.74it/s]
67%
| 335/500 [00:00<00:00, 461.59it/s]
77%|
                        | 384/500 [00:00<00:00, 469.04it/s]
86%|
                        | 432/500 [00:00<00:00, 458.65it/s]
100%
                        || 500/500 [00:01<00:00, 437.92it/s]
20%
2/10 [00:02<00:08, 1.11s/it]
 0%|
| 0/500 [00:00<?, ?it/s]
| 54/500 [00:00<00:00, 539.16it/s]
| 108/500 [00:00<00:00, 508.57it/s]
```

```
32%|
| 159/500 [00:00<00:00, 507.39it/s]
43%|
| 215/500 [00:00<00:00, 524.55it/s]
54%
271/500 [00:00<00:00, 534.75it/s]
65%
| 325/500 [00:00<00:00, 532.33it/s]
76%||
                        | 379/500 [00:00<00:00, 530.92it/s]
87%|
                        | 434/500 [00:00<00:00, 535.02it/s]
100%|
                       || 500/500 [00:00<00:00, 527.43it/s]
30%||
| 3/10 [00:03<00:07, 1.04s/it]
 0%|
| 0/500 [00:00<?, ?it/s]
 9%
| 43/500 [00:00<00:01, 426.54it/s]
19%|
| 97/500 [00:00<00:00, 490.50it/s]
| 149/500 [00:00<00:00, 502.95it/s]
40%
200/500 [00:00<00:00, 502.03it/s]
50%
| 251/500 [00:00<00:00, 496.13it/s]
60%
| 301/500 [00:00<00:00, 465.39it/s]
70%
| 348/500 [00:00<00:00, 439.43it/s]
79%
                       | 393/500 [00:00<00:00, 408.63it/s]
88%|
                       | 440/500 [00:00<00:00, 425.70it/s]
100%
                       || 500/500 [00:01<00:00, 443.07it/s]
| 4/10 [00:04<00:06, 1.07s/it]
 0%
| 0/500 [00:00<?, ?it/s]
 9%|
| 46/500 [00:00<00:00, 454.45it/s]
19%
97/500 [00:00<00:00, 481.09it/s]
29%
| 147/500 [00:00<00:00, 488.20it/s]
39%|
| 197/500 [00:00<00:00, 490.36it/s]
50%
| 250/500 [00:00<00:00, 504.19it/s]
60%
| 301/500 [00:00<00:00, 476.74it/s]
| 349/500 [00:00<00:00, 450.43it/s]
```

```
79%||
                        | 395/500 [00:00<00:00, 427.30it/s]
89%||
                        | 444/500 [00:00<00:00, 444.93it/s]
100%
                        || 500/500 [00:01<00:00, 460.04it/s]
50%
| 5/10 [00:05<00:05, 1.08s/it]
 0%|
| 0/500 [00:00<?, ?it/s]
 7%|
| 37/500 [00:00<00:01, 356.08it/s]
15%||
| 73/500 [00:00<00:01, 344.75it/s]
22%|
| 108/500 [00:00<00:01, 342.20it/s]
31%
| 154/500 [00:00<00:00, 385.10it/s]
41%
| 204/500 [00:00<00:00, 422.99it/s]
| 248/500 [00:00<00:00, 426.04it/s]
297/500 [00:00<00:00, 446.16it/s]
69% I
| 345/500 [00:00<00:00, 454.02it/s]
79%|
                        | 393/500 [00:00<00:00, 458.69it/s]
88%|
                        | 440/500 [00:01<00:00, 461.60it/s]
100%
                        || 500/500 [00:01<00:00, 429.94it/s]
60%
| 6/10 [00:06<00:04, 1.11s/it]
 0%|
| 0/500 [00:00<?, ?it/s]
| 46/500 [00:00<00:00, 458.99it/s]
18%|
92/500 [00:00<00:00, 424.69it/s]
| 141/500 [00:00<00:00, 450.93it/s]
39%
| 194/500 [00:00<00:00, 479.79it/s]
49%
247/500 [00:00<00:00, 497.33it/s]
60%
299/500 [00:00<00:00, 502.27it/s]
71%||
| 353/500 [00:00<00:00, 511.81it/s]
81%|
                        | 407/500 [00:00<00:00, 516.29it/s]
100%
                        | 500/500 [00:01<00:00, 487.20it/s]
70%
7/10 [00:07<00:03, 1.09s/it]
```

```
0%|
| 0/500 [00:00<?, ?it/s]
 9%|
| 46/500 [00:00<00:00, 458.20it/s]
19%
97/500 [00:00<00:00, 484.90it/s]
29%
| 147/500 [00:00<00:00, 488.52it/s]
| 201/500 [00:00<00:00, 503.84it/s]
50%
| 252/500 [00:00<00:00, 502.14it/s]
61%
| 303/500 [00:00<00:00, 485.38it/s]
70%
| 352/500 [00:00<00:00, 470.20it/s]
80%
                       | 401/500 [00:00<00:00, 474.15it/s]
100%|
                        | 500/500 [00:01<00:00, 487.29it/s]
80%|
                           | 8/10 [00:08<00:02, 1.07s/it]
 0%|
| 0/500 [00:00<?, ?it/s]
10%
48/500 [00:00<00:00, 468.84it/s]
19%
| 95/500 [00:00<00:01, 377.54it/s]
27%|
| 137/500 [00:00<00:00, 393.44it/s]
37%|
| 184/500 [00:00<00:00, 421.25it/s]
47%
233/500 [00:00<00:00, 442.84it/s]
56%
282/500 [00:00<00:00, 454.87it/s]
66%
| 328/500 [00:00<00:00, 427.15it/s]
74%
| 372/500 [00:00<00:00, 420.50it/s]
83%|
                       | 415/500 [00:00<00:00, 418.57it/s]
100%
                        | 500/500 [00:01<00:00, 429.63it/s]
90%
                           | 9/10 [00:09<00:01, 1.11s/it]
 0%|
| 0/500 [00:00<?, ?it/s]
10%|
| 50/500 [00:00<00:00, 493.10it/s]
20%
| 100/500 [00:00<00:00, 465.60it/s]
29%
| 147/500 [00:00<00:00, 463.26it/s]
| 194/500 [00:00<00:00, 385.16it/s]
```

```
49%||
243/500 [00:00<00:00, 416.78it/s]
57%|
287/500 [00:00<00:00, 404.06it/s]
68%
| 338/500 [00:00<00:00, 433.58it/s]
77%|
                        | 383/500 [00:01<00:00, 288.42it/s]
84%|
                          419/500 [00:01<00:00, 302.23it/s]
91%|
                        | 456/500 [00:01<00:00, 317.44it/s]
100%|
                          500/500 [00:01<00:00, 360.03it/s]
100%|
                          1 10/10 [00:11<00:00, 1.12s/it]
 View first 5 rows of the data
```

```
In [17]: # View the head of the DataFrame
          dataset.head()
Out[17]:
                                                  features class
          0 [-634.2726, 60.718662, 19.634466, 54.73299, 31...
                                                               3
          1
              [-615.57446, 117.79709, 20.75868, 23.231092, 2...
                                                               2
          2 [-632.2322, 63.031258, 15.4895, 50.909485, 32....
                                                               3
               [-619.4891, 70.50161, 7.5741982, 47.71054, 36....
          3
                                                               3
          4
               [-611.01135, 110.0762, 19.848354, 13.996176, 8...
                                                               4
In [18]:
         dataset.shape
Out[18]: (5000, 2)
In [19]: dataset.describe().T
Out[19]:
                    count unique
                                                                            top freq
                    5000
                            5000 [-634.2726, 60.718662, 19.634466, 54.73299, 31...
          features
             class 5000
                               10
                                                                              3 500
In [20]: # Storing the class as int
          dataset['class'] = [int(x) for x in dataset['class']]
In [21]: # Check the frequency of classes in the dataset
          dataset['class'].value_counts()
```

```
Out[21]: class
          3
               500
          2
               500
          4
               500
               500
               500
          7
          8
               500
          5
               500
          1
               500
               500
               500
          Name: count, dtype: int64
```

Visualizing the Mel Frequency Cepstral Coefficients Using a Spectrogram

• draw_spectrograms: From the Mel Coefficients we are extracting for a particular audio, this function is creating the 2-D graph of those coefficients with the X-axis representing time and the Y-axis shows the corresponding Mel coefficients in that time step.

The very first MFCC coefficient (0th coefficient) does not provide information about the overall shape of the spectrum. It simply communicates a constant offset or the addition of a constant value to the full spectrum. As a result, when performing classification, many practitioners will disregard the initial MFCC. In the images, you can see those represented by blue pixels.

We can plot the MFCCs, but it's difficult to tell what kind of signal is hiding behind such representation.

```
In [23]: # Creating subplots
fig, ax = plt.subplots(5, 2, figsize = (15, 30))

# Initializing row and column variables for subplots
row = 0
column = 0

for digit in range(10):

# Get the audio of different classes (0-9)
```

```
audio_data, sample_rate = get_audio_raw(digit)
     # Extract their MFCC
     mfcc = draw_spectrograms(audio_data, sample_rate)
     print(f"Shape of MFCC of audio digit {digit} ---> ", mfcc.shape)
     # Display the plots and its title
     ax[row,column].set_title(f"MFCC of audio class {digit} across time")
     librosa.display.specshow(mfcc, sr = 22050, ax = ax[row, column])
     # Set X-labels and Y-labels
     ax[row,column].set xlabel("Time")
     ax[row,column].set_ylabel("MFCC Coefficients")
     # Conditions for positioning of the plots
     if column == 1:
         column = 0
         row += 1
     else:
         column+=1
 plt.tight_layout(pad = 3)
 plt.show()
Shape of MFCC of audio digit 0 ---> (40, 25)
Shape of MFCC of audio digit 1 ---> (40, 24)
Shape of MFCC of audio digit 2 ---> (40, 23)
Shape of MFCC of audio digit 3 ---> (40, 21)
Shape of MFCC of audio digit 4 ---> (40, 21)
Shape of MFCC of audio digit 5 ---> (40, 22)
```

Shape of MFCC of audio digit 6 ---> (40, 40) Shape of MFCC of audio digit 7 ---> (40, 26) Shape of MFCC of audio digit 8 ---> (40, 23) Shape of MFCC of audio digit 9 ---> (40, 24)

Visual Inspection of MFCC Spectrograms:

On inspecting them visually, we can see that there are a lot of deviations from the spectrograms of one audio to another. There are a lot of tiny rectangles and bars whose positions are unique to each audio. So, the Artificial Neural Network should be able to perform decently in identifying these audios.

Perform Train-Test-Split

• Split the data into train and test sets

```
In [24]: # Import train_test_split function
    from sklearn.model_selection import train_test_split

X = np.array(dataset['features'].to_list())
Y = np.array(dataset['class'].to_list())

# Create train set and test set
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size = 0.75,

In [25]: # Checking the shape of the data
X_train.shape
Out[25]: (3750, 40)
```

Modelling

Create an artificial neural network to recognize the digit.

About the libraries:

- Keras: Keras is an open-source deep-learning library in Python. Keras is popular because the API was clean and simple, allowing standard deep learning models to be defined, fit, and evaluated in just a few lines of code.
- Sklearn:
 - Simple and efficient tools for predictive data analysis
 - Accessible to everybody, and reusable in various contexts
 - Built on NumPy, SciPy, and matplotlib
 - Open source, commercially usable

Import necessary libraries for building the model

```
In [26]: # To create an ANN model
    from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import Dense, Dropout

# To create a checkpoint and save the best model
    from tensorflow.keras.callbacks import ModelCheckpoint

# To load the model
    from tensorflow.keras.models import load_model

# To evaluate the model
    from sklearn.metrics import classification_report, confusion_matrix
    from sklearn.preprocessing import LabelBinarizer
```

Model Creation

Why are we using ANN's?

When we are converting audios to their corresponding spectrograms, we will have similar spectrograms for similar audios irrespective of who the speaker is, and what is their pitch and timber like. So local spatiality is never going to be a problem. So having convolutional layers on top of our fully connected layers is just adding to our computational redundancy.

We will use a Sequential model with multiple connected hidden layers, and an output layer that returns a single, continuous value.

- A Sequential model is a linear stack of layers. Sequential models can be created by giving a list of layer instances.
- A dense layer of neurons is a simple layer of neurons in which each neuron receives input from all of the neurons in the previous layer.
- The most popular function employed for hidden layers is the rectified linear activation function, or ReLU activation function. It's popular because it's easy to use and effective in getting around the limitations of other popular activation functions like Sigmoid and Tanh.

```
In [27]: # Crete a Sequential Object
model = Sequential()

# Add first layer with 100 neurons to the sequental object
model.add(Dense(100, input_shape = (40, ), activation = 'relu'))

# Add second layer with 100 neurons to the sequental object
model.add(Dense(100, activation = 'relu'))

# Add third layer with 100 neurons to the sequental object
model.add(Dense(100, activation = 'relu'))

# Output layer with 10 neurons as it has 10 classes
model.add(Dense(10, activation = 'softmax'))
```

/Users/obaozai/miniconda3/envs/jupyter/lib/python3.11/site-packages/keras/sr c/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead. super().__init__(activity_regularizer=activity_regularizer, **kwargs)

```
In [28]: # Print Summary of the model
model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Par
dense (Dense)	(None, 100)	4
dense_1 (Dense)	(None, 100)	10
dense_2 (Dense)	(None, 100)	10
dense_3 (Dense)	(None, 10)	1

Total params: 25,310 (98.87 KB)
Trainable params: 25,310 (98.87 KB)
Non-trainable params: 0 (0.00 B)

Model Checkpoint & Training

```
In [30]: # Set the number of epochs for training
num_epochs = 100

# Set the batch size for training
batch_size = 32

# Fit the model
model.fit(X_train, Y_train, validation_data = (X_test, Y_test), epochs = num
```

```
Epoch 1/100
                 Os 1ms/step - accuracy: 0.2667 - loss: 7.4935 -
118/118 ——
val accuracy: 0.7568 - val loss: 0.7217
Epoch 2/100

118/118 ______ 0s 635us/step - accuracy: 0.8055 - loss: 0.5902
- val accuracy: 0.7648 - val loss: 0.5980
Epoch 3/100
118/118 — 0s 622us/step – accuracy: 0.8566 – loss: 0.4161
- val accuracy: 0.8888 - val loss: 0.3074
Epoch 4/100
118/118 ——
                   Os 614us/step - accuracy: 0.9175 - loss: 0.2538
- val accuracy: 0.9192 - val loss: 0.2091
Epoch 5/100
                   —— 0s 608us/step - accuracy: 0.9293 - loss: 0.2207
118/118 -
- val_accuracy: 0.9328 - val_loss: 0.1806
Epoch 6/100
                   Os 617us/step - accuracy: 0.9426 - loss: 0.1679
118/118 —
- val_accuracy: 0.9744 - val_loss: 0.0909
Epoch 7/100

118/118 ______ 0s 613us/step - accuracy: 0.9602 - loss: 0.1277
- val_accuracy: 0.9736 - val_loss: 0.0909
- val_accuracy: 0.9536 - val_loss: 0.1094
Epoch 9/100
                   Os 612us/step - accuracy: 0.9761 - loss: 0.0727
118/118 ——
- val_accuracy: 0.9728 - val_loss: 0.0870
Epoch 10/100
                   Os 612us/step - accuracy: 0.9660 - loss: 0.1024
118/118 —
- val_accuracy: 0.9512 - val_loss: 0.1381
Epoch 11/100
                Os 643us/step - accuracy: 0.9610 - loss: 0.1195
118/118 —
- val_accuracy: 0.9568 - val_loss: 0.1174
- val_accuracy: 0.9760 - val_loss: 0.0782
- val accuracy: 0.9776 - val loss: 0.0634
- val accuracy: 0.9760 - val loss: 0.0663
Epoch 15/100
            Os 665us/step - accuracy: 0.9781 - loss: 0.0695
118/118 ———
- val_accuracy: 0.9856 - val_loss: 0.0445
Epoch 16/100
               Os 617us/step - accuracy: 0.9821 - loss: 0.0448
118/118 ——
- val_accuracy: 0.9704 - val_loss: 0.0880
Epoch 17/100
                   Os 668us/step - accuracy: 0.9630 - loss: 0.0904
118/118 —
- val_accuracy: 0.9784 - val_loss: 0.0765
- val_accuracy: 0.9672 - val_loss: 0.0964
Epoch 19/100
              Os 652us/step - accuracy: 0.9672 - loss: 0.0845
118/118 ———
```

```
- val_accuracy: 0.9688 - val_loss: 0.0750
Epoch 20/100
118/118 — 0s 649us/step - accuracy: 0.9802 - loss: 0.0590
- val_accuracy: 0.9696 - val_loss: 0.0861
Epoch 21/100
                   Os 730us/step - accuracy: 0.9813 - loss: 0.0571
118/118 ——
- val_accuracy: 0.9808 - val_loss: 0.0583
Epoch 22/100
                Os 670us/step - accuracy: 0.9707 - loss: 0.0819
118/118 -
- val_accuracy: 0.9888 - val_loss: 0.0402
Epoch 23/100
                   Os 653us/step - accuracy: 0.9846 - loss: 0.0439
118/118 ——
- val_accuracy: 0.9576 - val_loss: 0.1189
- val accuracy: 0.9600 - val loss: 0.1199
- val accuracy: 0.9904 - val loss: 0.0314
Epoch 26/100
           Os 678us/step - accuracy: 0.9818 - loss: 0.0493
118/118 ———
- val accuracy: 0.9768 - val loss: 0.0687
Epoch 27/100
                   Os 659us/step - accuracy: 0.9714 - loss: 0.0733
- val_accuracy: 0.9728 - val_loss: 0.0709
Epoch 28/100
                Os 663us/step - accuracy: 0.9763 - loss: 0.0817
118/118 —
- val_accuracy: 0.9720 - val_loss: 0.0994
- val accuracy: 0.9312 - val loss: 0.2456
- val_accuracy: 0.9680 - val_loss: 0.0693
Epoch 31/100
118/118 — 0s 647us/step – accuracy: 0.9853 – loss: 0.0378
- val_accuracy: 0.9824 - val_loss: 0.0601
Epoch 32/100
118/118 ———
            Os 654us/step - accuracy: 0.9821 - loss: 0.0522
- val_accuracy: 0.9600 - val_loss: 0.1364
Epoch 33/100
               Os 615us/step - accuracy: 0.9779 - loss: 0.0727
118/118 ——
- val_accuracy: 0.9840 - val_loss: 0.0502
Epoch 34/100
                  ---- 0s 650us/step - accuracy: 0.9785 - loss: 0.0729
118/118 ———
- val_accuracy: 0.9680 - val_loss: 0.0920
Epoch 35/100
            Os 634us/step - accuracy: 0.9753 - loss: 0.0798
118/118 ———
- val_accuracy: 0.9880 - val_loss: 0.0354
Epoch 36/100
118/118 — 0s 653us/step – accuracy: 0.9927 – loss: 0.0204
- val_accuracy: 0.9808 - val_loss: 0.0490
Epoch 37/100
118/118 — 0s 650us/step – accuracy: 0.9873 – loss: 0.0415
- val_accuracy: 0.9224 - val_loss: 0.2533
Epoch 38/100
```

```
Os 625us/step - accuracy: 0.9801 - loss: 0.0633
- val_accuracy: 0.9744 - val_loss: 0.0759
Epoch 39/100
                   Os 640us/step - accuracy: 0.9803 - loss: 0.0507
118/118 -
- val_accuracy: 0.9848 - val_loss: 0.0512
Epoch 40/100
                    Os 622us/step - accuracy: 0.9826 - loss: 0.0510
118/118 ———
- val_accuracy: 0.9824 - val_loss: 0.0548
Epoch 41/100
118/118 — 0s 663us/step – accuracy: 0.9904 – loss: 0.0286
- val_accuracy: 0.9824 - val_loss: 0.0596
Epoch 42/100
118/118 — 0s 656us/step – accuracy: 0.9812 – loss: 0.0507
- val accuracy: 0.9880 - val loss: 0.0545
Epoch 43/100
            Os 619us/step - accuracy: 0.9912 - loss: 0.0305
118/118 ———
- val_accuracy: 0.9832 - val_loss: 0.0566
Epoch 44/100
                     Os 645us/step - accuracy: 0.9928 - loss: 0.0198
118/118 —
- val_accuracy: 0.9800 - val_loss: 0.0604
Epoch 45/100
                    Os 636us/step - accuracy: 0.9753 - loss: 0.1101
118/118 —
- val_accuracy: 0.9840 - val_loss: 0.0454
Epoch 46/100
                Os 632us/step - accuracy: 0.9889 - loss: 0.0245
118/118 ———
- val accuracy: 0.9808 - val loss: 0.0650
- val accuracy: 0.9784 - val loss: 0.0629
Epoch 48/100
             Os 641us/step - accuracy: 0.9915 - loss: 0.0196
118/118 ———
- val accuracy: 0.9848 - val loss: 0.0464
Epoch 49/100
                     Os 660us/step - accuracy: 0.9898 - loss: 0.0294
118/118 -
- val_accuracy: 0.9880 - val_loss: 0.0431
Epoch 50/100
                  Os 647us/step - accuracy: 0.9867 - loss: 0.0357
118/118 -
- val accuracy: 0.9760 - val loss: 0.0812
Epoch 51/100
                    Os 631us/step - accuracy: 0.9912 - loss: 0.0253
118/118 —
- val accuracy: 0.9872 - val loss: 0.0442
- val accuracy: 0.9864 - val loss: 0.0346
Epoch 53/100
118/118 — 0s 655us/step - accuracy: 0.9938 - loss: 0.0177
- val accuracy: 0.9840 - val loss: 0.0516
Epoch 54/100
              Os 637us/step - accuracy: 0.9890 - loss: 0.0252
118/118 ———
val accuracy: 0.9912 - val loss: 0.0277
Epoch 55/100
                     Os 649us/step - accuracy: 0.9921 - loss: 0.0239
118/118 -
- val accuracy: 0.9832 - val loss: 0.0671
Epoch 56/100
                      — 0s 624us/step - accuracy: 0.9857 - loss: 0.0349
118/118 -
- val accuracy: 0.9888 - val loss: 0.0358
```

```
Epoch 57/100

119/118 ______ 0s 659us/step - accuracy: 0.9883 - loss: 0.0442
- val accuracy: 0.9848 - val loss: 0.0539
Epoch 58/100
            Os 626us/step – accuracy: 0.9903 – loss: 0.0220
118/118 ———
- val accuracy: 0.9864 - val loss: 0.0517
Epoch 59/100
118/118 — 0s 645us/step – accuracy: 0.9986 – loss: 0.0066
- val accuracy: 0.9880 - val loss: 0.0529
Epoch 60/100
118/118 ———
                   — 0s 666us/step - accuracy: 0.9913 - loss: 0.0349
- val accuracy: 0.9864 - val loss: 0.0355
Epoch 61/100
                   Os 647us/step - accuracy: 0.9885 - loss: 0.0391
118/118 -
- val_accuracy: 0.9888 - val_loss: 0.0329
Epoch 62/100
                   Os 628us/step - accuracy: 0.9972 - loss: 0.0056
118/118 —
- val_accuracy: 0.9928 - val_loss: 0.0278
- val_accuracy: 0.9904 - val_loss: 0.0352
val_accuracy: 0.9848 - val_loss: 0.0600
Epoch 65/100
                  Os 688us/step - accuracy: 0.9921 - loss: 0.0228
118/118 ———
- val_accuracy: 0.9896 - val_loss: 0.0352
Epoch 66/100
                   — 0s 659us/step - accuracy: 0.9988 - loss: 0.0040
118/118 —
- val_accuracy: 0.9720 - val_loss: 0.0952
Epoch 67/100
               Os 618us/step - accuracy: 0.9913 - loss: 0.0272
118/118 -
- val_accuracy: 0.9848 - val_loss: 0.0545
- val_accuracy: 0.9912 - val_loss: 0.0274
- val accuracy: 0.9872 - val loss: 0.0626
- val accuracy: 0.9928 - val loss: 0.0291
Epoch 71/100
            Os 629us/step - accuracy: 0.9947 - loss: 0.0121
118/118 ———
- val_accuracy: 0.9920 - val_loss: 0.0261
Epoch 72/100
               Os 629us/step - accuracy: 1.0000 - loss: 6.0500
118/118 ——
e-04 - val_accuracy: 0.9936 - val_loss: 0.0246
Epoch 73/100
                  Os 614us/step - accuracy: 1.0000 - loss: 2.9582
118/118 —
e-04 - val_accuracy: 0.9928 - val_loss: 0.0259
e-04 - val_accuracy: 0.9952 - val_loss: 0.0247
Epoch 75/100
              Os 640us/step - accuracy: 1.0000 - loss: 1.3299
118/118 ———
```

```
e-04 - val accuracy: 0.9936 - val loss: 0.0259
Epoch 76/100
118/118 — 0s 614us/step - accuracy: 1.0000 - loss: 1.7931
e-04 - val_accuracy: 0.9928 - val_loss: 0.0261
Epoch 77/100
118/118 —
                   Os 624us/step - accuracy: 1.0000 - loss: 1.7376
e-04 - val accuracy: 0.9928 - val loss: 0.0256
Epoch 78/100
                  Os 611us/step - accuracy: 1.0000 - loss: 1.4021
118/118 —
e-04 - val_accuracy: 0.9928 - val_loss: 0.0265
Epoch 79/100
                   Os 624us/step - accuracy: 1.0000 - loss: 1.1809
118/118 ———
e-04 - val_accuracy: 0.9928 - val_loss: 0.0257
e-04 - val accuracy: 0.9928 - val loss: 0.0258
Epoch 81/100
118/118 — 0s 630us/step - accuracy: 1.0000 - loss: 1.2501
e-04 - val accuracy: 0.9928 - val loss: 0.0254
Epoch 82/100
118/118 — 0s 631us/step - accuracy: 1.0000 - loss: 9.3003
e-05 - val accuracy: 0.9928 - val loss: 0.0266
Epoch 83/100
                  Os 623us/step - accuracy: 1.0000 - loss: 1.0386
e-04 - val accuracy: 0.9936 - val loss: 0.0261
Epoch 84/100
                  Os 624us/step - accuracy: 1.0000 - loss: 8.9002
118/118 ——
e-05 - val_accuracy: 0.9928 - val_loss: 0.0256
Epoch 85/100
            0s 620us/step – accuracy: 1.0000 – loss: 8.4360
118/118 ———
e-05 - val accuracy: 0.9936 - val loss: 0.0268
e-05 - val accuracy: 0.9936 - val loss: 0.0264
Epoch 87/100
118/118 — 0s 619us/step - accuracy: 1.0000 - loss: 5.4788
e-05 - val accuracy: 0.9944 - val loss: 0.0261
Epoch 88/100
             Os 619us/step - accuracy: 1.0000 - loss: 6.8237
e-05 - val_accuracy: 0.9920 - val_loss: 0.0262
Epoch 89/100
                  Os 611us/step - accuracy: 1.0000 - loss: 6.9803
118/118 ——
e-05 - val_accuracy: 0.9928 - val_loss: 0.0262
Epoch 90/100
118/118 ———
                   Os 629us/step - accuracy: 1.0000 - loss: 7.5340
e-05 - val_accuracy: 0.9928 - val_loss: 0.0275
Epoch 91/100
             Os 623us/step - accuracy: 1.0000 - loss: 6.2406
118/118 ———
e-05 - val_accuracy: 0.9928 - val_loss: 0.0270
Epoch 92/100
118/118 — 0s 624us/step – accuracy: 1.0000 – loss: 5.2389
e-05 - val_accuracy: 0.9928 - val_loss: 0.0269
Epoch 93/100
118/118 — 0s 623us/step – accuracy: 1.0000 – loss: 5.1984
e-05 - val accuracy: 0.9936 - val loss: 0.0269
Epoch 94/100
```

```
Os 609us/step - accuracy: 1.0000 - loss: 5.4045
       e-05 - val_accuracy: 0.9936 - val_loss: 0.0274
       Epoch 95/100
       118/118 ——
                            ----- 0s 620us/step - accuracy: 1.0000 - loss: 5.4869
       e-05 - val_accuracy: 0.9936 - val_loss: 0.0281
       Epoch 96/100
                            Os 616us/step - accuracy: 1.0000 - loss: 5.9503
       118/118 ——
       e-05 - val_accuracy: 0.9936 - val_loss: 0.0254
       Epoch 97/100
       118/118 — 0s 615us/step – accuracy: 1.0000 – loss: 6.1865
       e-05 - val_accuracy: 0.9936 - val_loss: 0.0272
       Epoch 98/100
       118/118 — 0s 626us/step – accuracy: 1.0000 – loss: 4.4272
       e-05 - val accuracy: 0.9936 - val loss: 0.0267
       Epoch 99/100
       118/118 — 0s 628us/step – accuracy: 1.0000 – loss: 2.9901
       e-05 - val_accuracy: 0.9936 - val_loss: 0.0262
       Epoch 100/100
                            Os 627us/step - accuracy: 1.0000 - loss: 6.8726
       118/118 —
       e-05 - val_accuracy: 0.9944 - val_loss: 0.0271
Out[30]: <keras.src.callbacks.history.History at 0x35487e5d0>
        Model Evaluation
In [31]: # Make predictions on the test set
        Y pred = model.predict(X test)
        Y_pred = [np.argmax(i) for i in Y_pred]
                  0s 566us/step
       40/40 -
In [32]: # Set style as dark
        sns.set_style("dark")
        # Set figure size
        plt.figure(figsize = (15, 8))
        # Plot the title
        plt.title("CONFUSION MATRIX FOR MNIST AUDIO PREDICTION")
        # Confusion matrix
        cm = confusion matrix([int(x) for x in Y test], Y pred)
        # Plot the confusion matrix as heatmap
        sns.heatmap(cm, annot = True, cmap = "cool", fmt = 'g', cbar = False)
        # Set X-label and Y-label
        plt.xlabel("ACTUAL VALUES")
```

plt.ylabel("PREDICTED VALUES")

print(classification report(Y test, Y pred))

Show the plot
plt.show()

Print the metrics

Observations:

- From the confusion matrix, we can observe that most of the observations are correctly identified by the model.
- In very few cases, the model is not able to identify the correct digit. For example, 9 observations are 0 but the model has predicted them as 2.
- The model has given a great performance with 99% recall, precision and F1-score.