
Credit Card Users Churn Prediction

Problem Statement

The Thera bank recently saw a steep decline in the number of credit card users. Credit

cards are a good source of money for banks because of several types of fees charged by

the banks, such as annual fees, balance transfer costs, cash advance fees, late payment

fees, international transaction fees, and others. Some costs are assessed to all users

regardless of consumption, while others are assessed only under specific conditions.

Customers leaving credit card services would result in a loss for the bank, so the bank

wants to analyse customer data to identify customers who will leave their credit card

services and the reasons for doing so – so that the bank can improve in those areas.

You as a Data scientist at Thera bank need to come up with a classification model that

will help the bank improve its services so that customers do not renounce their credit

cards. You need to identify the best possible model that will give the required

performance.

Dataset Description

CLIENTNUM - Client number. Unique identifier for the customer holding the

account

Attrition_Flag - Internal event (customer activity) variable - if the account is closed

then "Attrited Customer" else "Existing Customer"

Customer_Age - Age in Years

Gender - Gender of the account holder

Dependent_count - Number of dependents

Education_Level - Educational Qualification of the account holder - Graduate, High

School, Unknown, Uneducated, College(refers to college student), Post-Graduate,

Doctorate

Marital_Status - Marital Status of the account holder

Income_Category - Annual Income Category of the account holder

Card_Category - Type of Card

Months_on_book - Period of relationship with the bank (in months)

Total_Relationship_Count - Total no. of products held by the customer

Months_Inactive_12_mon - No. of months inactive in the last 12 months

Contacts_Count_12_mon - No. of Contacts in the last 12 months

Credit_Limit - Credit Limit on the Credit Card

Total_Revolving_Bal - Total Revolving Balance on the Credit Card

Avg_Open_To_Buy - Open to Buy Credit Line (Average of last 12 months)

Total_Amt_Chng_Q4_Q1 - Change in Transaction Amount (Q4 over Q1)

Total_Trans_Amt - Total Transaction Amount (Last 12 months)

Total_Trans_Ct - Total Transaction Count (Last 12 months)

Total_Ct_Chng_Q4_Q1 - Change in Transaction Count (Q4 over Q1)

Avg_Utilization_Ratio - Average Card Utilization Ratio

What is a Revolving Balance?

If we don't pay the balance of the revolving credit account in full every month, the

unpaid portion carries over to the next month. That's called a revolving balance.

What is the Average Open to buy?

'Open to Buy' means the amount left on your credit card to use. Now, this column

represents the average of this value for the last 12 months.

What is the Average utilization Ratio?

The Avg_Utilization_Ratio represents how much of the available credit the customer

spent. This is useful for calculating credit scores.

Relation b/w Avg_Open_To_Buy, Credit_Limit and Avg_Utilization_Ratio:

(Avg_Open_To_Buy / Credit_Limit) + Avg_Utilization_Ratio = 1

Importing the libraries and overview of the dataset

Libraries to help with reading and manipulating data
import pandas as pd
import numpy as np

Libaries to help with data visualization
import matplotlib.pyplot as plt
import seaborn as sns

Removes the limit for the number of displayed columns
pd.set_option("display.max_columns", None)
Sets the limit for the number of displayed rows
pd.set_option("display.max_rows", 200)
Setting the precision of floating numbers to 5 decimal points
pd.set_option("display.float_format", lambda x: "%.5f" % x)

To tune model, get different metric scores, and split data
from sklearn.metrics import (
 f1_score,

In [154…

 accuracy_score,
 recall_score,
 precision_score,
 confusion_matrix,
 roc_auc_score,
 classification_report,
 precision_recall_curve
)
from sklearn import metrics

from sklearn.model_selection import train_test_split, StratifiedKFold, cross

To be used for data scaling and one hot encoding
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncode

To impute missing values
from sklearn.impute import SimpleImputer

To help with model building
from sklearn.linear_model import LogisticRegression

To build classification models
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression

For tuning the model
from sklearn.model_selection import GridSearchCV

To supress warnings
import warnings
warnings.filterwarnings("ignore")

Loading Data

from google.colab import drive
drive.mount('/content/drive')

Loading the dataset
churn = pd.read_csv("/content/Mydrive/MyDrive/BankChurners.csv")

Checking the number of rows and columns in the data
churn.shape

(10127, 21)

Observations:

There are 10127 observations and 21 columns in the dataset.

Data Overview

In [155…

In [156…

In [157…

Out[157…

Let's create a copy of the data
data = churn.copy()

Let's view the first 5 rows of the data
data.head()

CLIENTNUM Attrition_Flag Customer_Age Gender Dependent_count Education_L

0 768805383
Existing

Customer
45 M 3 High Sc

1 818770008
Existing

Customer
49 F 5 Grad

2 713982108
Existing

Customer
51 M 3 Grad

3 769911858
Existing

Customer
40 F 4 High Sc

4 709106358
Existing

Customer
40 M 3 Uneduc

Let's view the last 5 rows of the data
data.tail()

CLIENTNUM Attrition_Flag Customer_Age Gender Dependent_count Educati

10122 772366833
Existing

Customer
50 M 2

10123 710638233
Attrited

Customer
41 M 2

10124 716506083
Attrited

Customer
44 F 1 Hig

10125 717406983
Attrited

Customer
30 M 2

10126 714337233
Attrited

Customer
43 F 2

Checking the info of the dataset

Let's check the data types of the columns in the dataset
data.info()

In [158…

In [159…

Out[159…

In [160…

Out[160…

In [161…

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10127 entries, 0 to 10126
Data columns (total 21 columns):
Column Non-Null Count Dtype

--- ------ -------------- -----
0 CLIENTNUM 10127 non-null int64
1 Attrition_Flag 10127 non-null object
2 Customer_Age 10127 non-null int64
3 Gender 10127 non-null object
4 Dependent_count 10127 non-null int64
5 Education_Level 8608 non-null object
6 Marital_Status 9378 non-null object
7 Income_Category 10127 non-null object
8 Card_Category 10127 non-null object
9 Months_on_book 10127 non-null int64
10 Total_Relationship_Count 10127 non-null int64
11 Months_Inactive_12_mon 10127 non-null int64
12 Contacts_Count_12_mon 10127 non-null int64
13 Credit_Limit 10127 non-null float64
14 Total_Revolving_Bal 10127 non-null int64
15 Avg_Open_To_Buy 10127 non-null float64
16 Total_Amt_Chng_Q4_Q1 10127 non-null float64
17 Total_Trans_Amt 10127 non-null int64
18 Total_Trans_Ct 10127 non-null int64
19 Total_Ct_Chng_Q4_Q1 10127 non-null float64
20 Avg_Utilization_Ratio 10127 non-null float64

dtypes: float64(5), int64(10), object(6)
memory usage: 1.6+ MB

Observations:

There are missing values in the Education_Level and Marital_Status.

Five columns are of the object type, and the remaining columns are all numerical.

Checking for Duplicate values and Missing Values

Let's check for duplicate values in the data
data.duplicated().sum()

0

Let's check for missing values in the data
round(data.isnull().sum() / data.isnull().count() * 100, 2)

In [162…

Out[162…

In [163…

CLIENTNUM 0.00000
Attrition_Flag 0.00000
Customer_Age 0.00000
Gender 0.00000
Dependent_count 0.00000
Education_Level 15.00000
Marital_Status 7.40000
Income_Category 0.00000
Card_Category 0.00000
Months_on_book 0.00000
Total_Relationship_Count 0.00000
Months_Inactive_12_mon 0.00000
Contacts_Count_12_mon 0.00000
Credit_Limit 0.00000
Total_Revolving_Bal 0.00000
Avg_Open_To_Buy 0.00000
Total_Amt_Chng_Q4_Q1 0.00000
Total_Trans_Amt 0.00000
Total_Trans_Ct 0.00000
Total_Ct_Chng_Q4_Q1 0.00000
Avg_Utilization_Ratio 0.00000
dtype: float64

Observations:

Education_Level has 15% missing values

Marital_Status has 7% missing values

Univariate analysis of numerical columns

Let's view the statistical summary of the numerical columns in the data
data.describe().T

Out[163…

In [164…

count mean std

CLIENTNUM 10127.00000 739177606.33366 36903783.45023 708082083.0

Customer_Age 10127.00000 46.32596 8.01681 26.0

Dependent_count 10127.00000 2.34620 1.29891 0.0

Months_on_book 10127.00000 35.92841 7.98642 13.0

Total_Relationship_Count 10127.00000 3.81258 1.55441 1.0

Months_Inactive_12_mon 10127.00000 2.34117 1.01062 0.0

Contacts_Count_12_mon 10127.00000 2.45532 1.10623 0.0

Credit_Limit 10127.00000 8631.95370 9088.77665 1438.3

Total_Revolving_Bal 10127.00000 1162.81406 814.98734 0.0

Avg_Open_To_Buy 10127.00000 7469.13964 9090.68532 3.0

Total_Amt_Chng_Q4_Q1 10127.00000 0.75994 0.21921 0.0

Total_Trans_Amt 10127.00000 4404.08630 3397.12925 510.0

Total_Trans_Ct 10127.00000 64.85869 23.47257 10.0

Total_Ct_Chng_Q4_Q1 10127.00000 0.71222 0.23809 0.0

Avg_Utilization_Ratio 10127.00000 0.27489 0.27569 0.0

Observations:

CLIENTNUM: It is a unique identifier for customers and can be dropped as it

wouldn't add any information to our analysis.

Customer_Age: Average age of customers is 46 years and it has a wide range from

26 to 73 years.

Dependent_count: On average the customers in the data have 2 dependents and a

maximum of 5 dependents.

Months_on_book: All the customers of the bank have at least been with them for a

year and 50% of the customers for at least 3 years.

Total_Relationship_Count: All customers use at least one product of the bank,

whereas 75% of customers use 5 or fewer products of the bank.

Months_Inactive_12_mon: On average customers were inactive for two months in

the past 12 months - this shows that the bank customers are active in transactions

or usage of cards it would be interesting to see if high inactivity leads to churning of

a customer.

Contacts_Count_12_mon: On average bank and customers interacted twice in the

past 12 months.

Credit_Limit: There's a huge difference between the third quartile and maximum

value. The range of credit limit is very wide from 1438 to 34516, customers with

Out[164…

high credit limit might be outliers.

Total_Revolving_Bal: Average revolving balance of customers is 1162, there's not

much difference in the third quartile and maximum value.

Avg_Open_To_Buy: Average amount that goes unused by the customers is 7469,

the range is very wide for this variable and the extreme values(min and max) might

be outliers.

Total_Amt_Chng_Q4_Q1: For 75% of the customers the transaction amount in Q4

was less than the transaction amount in Q1 (as value is equal to ~0.9).

Total_Trans_Amt: Average transaction amount of last 12 months is 4404, some

customers spent as little as 510 while some customers made the transaction of

more than 18k.

Total_Trans_Ct: On average customers made 64 or fewer transactions while 75%

of the customers made 81 transactions.

Total_Ct_Chng_Q4_Q1: For 75% of the customers the number of transactions in

Q4 was less than the transactions made in Q1.

Avg_Utilization_Ratio: On average customers used ~27% of the available credit

amount of their card, with 75% of the customers utilizing 50% or less of their

available credit amount.

Univariate analysis for categorical variables

data.describe(include=["object"]).T

count unique top freq

Attrition_Flag 10127 2 Existing Customer 8500

Gender 10127 2 F 5358

Education_Level 8608 6 Graduate 3128

Marital_Status 9378 3 Married 4687

Income_Category 10127 6 Less than $40K 3561

Card_Category 10127 4 Blue 9436

Printing the % sub categories of each category

for i in data.describe(include=["object"]).columns:
 print("Unique values in", i, "are :")
 print(data[i].value_counts())
 print("*" * 50)

In [165…

Out[165…

In [166…

Unique values in Attrition_Flag are :
Attrition_Flag
Existing Customer 8500
Attrited Customer 1627
Name: count, dtype: int64
**
Unique values in Gender are :
Gender
F 5358
M 4769
Name: count, dtype: int64
**
Unique values in Education_Level are :
Education_Level
Graduate 3128
High School 2013
Uneducated 1487
College 1013
Post-Graduate 516
Doctorate 451
Name: count, dtype: int64
**
Unique values in Marital_Status are :
Marital_Status
Married 4687
Single 3943
Divorced 748
Name: count, dtype: int64
**
Unique values in Income_Category are :
Income_Category
Less than $40K 3561
$40K - $60K 1790
$80K - $120K 1535
$60K - $80K 1402
abc 1112
$120K + 727
Name: count, dtype: int64
**
Unique values in Card_Category are :
Card_Category
Blue 9436
Silver 555
Gold 116
Platinum 20
Name: count, dtype: int64
**

Observations:

Most of the records are for existing customers.

Most of the bank's customers are female.

Most customers are graduates.

Most customers are married.

Most customers are in the income group of less than $40k

Most customers have blue card.

'abc' value of Income_Category can be considered and treated as missing values.

Data Preprocessing

CLIENTNUM consists of uniques ID for clients and hence will not add value

data.drop(["CLIENTNUM"], axis=1, inplace=True)

Encoding Existing and Attrited customers to 0 and 1 respectively, for ana

data["Attrition_Flag"].replace("Existing Customer", 0, inplace=True)
data["Attrition_Flag"].replace("Attrited Customer", 1, inplace=True)

Exploratory Data Analysis

Univariate analysis

Let's explore these variables in some more depth by observing their distributions

1.Customer_Age:

f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={'height_rat
sns.set_style("darkgrid")

Add a graph in each part
sns.boxplot(data=data, x="Customer_Age", ax=ax_box)
sns.histplot(data=data, x="Customer_Age", kde=True, ax=ax_hist)
ax_box.set(xlabel='Customer Age')

plt.show()

In [167…

In [168…

In [169…

Observations:

The distribution of Customer_Age is normally distributed with mean and median at

46 years.

From the boxplot, we can see that there are a few outliers.

2.Months_on_book

f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_rat
sns.boxplot(data=data, x="Months_on_book", ax=ax_box)
sns.histplot(data=data, x="Months_on_book", ax=ax_hist, stat='density')
sns.kdeplot(data=data, x="Months_on_book", ax=ax_hist, color='blue')
ax_box.set(xlabel='Months_on_book')
plt.show()

In [170…

Observations:

Most customers are with the bank for 3 years.

From the boxplot, we can see that there are outliers on both sides of the whiskers.

3.Credit_Limit

f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_rat
sns.boxplot(data=data, x="Credit_Limit", ax=ax_box)
sns.histplot(data=data, x="Credit_Limit", ax=ax_hist, stat='density')
sns.kdeplot(data=data, x="Credit_Limit", ax=ax_hist, color='blue')
ax_box.set(xlabel='Credit_Limit')
plt.show()

In [171…

Observations:

The distribution of the Credit_Limit is skewed to the right.

There are quite a few customers with a maximum Credit Limit of 35000.

50% of the customers of the bank have a credit limit of less than <5000.

4.Total_Revolving_Bal

f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_rat
sns.boxplot(data=data, x="Total_Revolving_Bal", ax=ax_box)
sns.histplot(data=data, x="Total_Revolving_Bal", ax=ax_hist, stat='density')
sns.kdeplot(data=data, x="Total_Revolving_Bal", ax=ax_hist, color='blue')
ax_box.set(xlabel='Total_Revolving_Bal')
plt.show()

In [172…

Observations:

Most customers pay the complete dues of credit card and have 0 revolving balance.

There are quite a few customers with a revolving balance of 2500.

5.Avg_Open_To_Buy

f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_rat
sns.boxplot(data=data, x="Avg_Open_To_Buy", ax=ax_box)
sns.histplot(data=data, x="Avg_Open_To_Buy", ax=ax_hist, stat='density')
sns.kdeplot(data=data, x="Avg_Open_To_Buy", ax=ax_hist, color='blue')
ax_box.set(xlabel='')
ax_hist.set_xlabel('Avg_Open_To_Buy')
plt.tight_layout()
plt.show()

In [173…

Observations:

The distribution of the Avg_Open_To_Buy column is right-skewed.

A right-skewed distribution indicates that most customers used a big part of their

limit while only a few customers (on the right tail) were left with a majority of their

credit amount.

6.Total_Trans_Ct

f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_rat
sns.boxplot(data=data, x=data["Total_Trans_Ct"], ax=ax_box)
sns.histplot(data["Total_Trans_Ct"], ax=ax_hist, kde=True, stat="density")
ax_box.set(xlabel='Total_Trans_Ct')
plt.show()

In [174…

Observations:

The distribution of Total_Trans_Ct shows two peaks on 40 and 80 transactions in a

year which indicates that customers used credit cards 3 to 6 times a month to make

transactions.

7.Total_Amt_Chng_Q4_Q1

f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_rat
sns.boxplot(data=data, x=data["Total_Amt_Chng_Q4_Q1"], ax=ax_box)
sns.histplot(data["Total_Amt_Chng_Q4_Q1"], ax=ax_hist, kde=True, stat="densi
ax_box.set(xlabel='Total_Amt_Chng_Q4_Q1')
plt.show()

In [175…

Observations:

The distribution of Total_Amt_Chng_Q4_Q1 looks normally distributed but there's a

slight skew towards the right.

From the boxplot, we can see that there are outliers on both sides of the whiskers.

8.Total_Trans_Amt

f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_rat
sns.boxplot(data=data, x=data["Total_Trans_Amt"], ax=ax_box)
sns.histplot(data=data["Total_Trans_Amt"], ax=ax_hist, kde=True, stat='densi
ax_box.set(xlabel='Total_Trans_Amt')
plt.show()

In [176…

Observations:

The distribution of Total_Trans_Amt is skewed to the right.

Data shows two peaks at total transaction amounts, one around 2500 and the other

around the mean value of 4500.

From the boxplot, we can see that there are outliers - customers with more than

~8000 total transaction amounts are being considered as outliers.

It would be interesting to check if the customers spending less with the card are the

ones churning or the ones spending more are churning, if the latter is the case then

there is a problem for the bank as it is losing valuable customers.

9.Total_Ct_Chng_Q4_Q1

f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_rat
sns.boxplot(data=data, x=data["Total_Ct_Chng_Q4_Q1"], ax=ax_box)
sns.histplot(data=data["Total_Ct_Chng_Q4_Q1"], ax=ax_hist, kde=True, stat='d
ax_box.set(xlabel='Total_Ct_Chng_Q4_Q1')
plt.show()

In [177…

Observations:

The distribution of Total_Ct_Chng_Q4_Q1 looks normally distributed but there's a

slight skew towards the right.

From the boxplot, we can see that there are outliers on both sides of the whiskers.

10.Avg_Utilization_Ratio

f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_rat
sns.boxplot(data=data, x="Avg_Utilization_Ratio", ax=ax_box)
sns.histplot(data=data, x="Avg_Utilization_Ratio", ax=ax_hist, kde=True, sta
sns.kdeplot(data=data, x="Avg_Utilization_Ratio", ax=ax_hist, color='blue')
ax_box.set(xlabel='Avg_Utilization_Ratio')
plt.show()

In [178…

Observations:

The distribution of Avg_Utilization_Ratio is skewed to the right.

This distribution is not a positive sign for the bank as most of the customers are not

utilizing their credit amount.

Credit limit, Average open to buy and Average utilization ratio are right-skewed.

1. Open to buy means how much credit a customer is left with

Low values of Open to buy could represent either

Customers have low credit limits

Customers are spending a lot so they are left less open to buy

2. Average utilization ratio = (1 - (open to buy/credit limit))

Low values of the Average utilization ratio represents

(Open to buy/credit limit) is nearly equal to 1 -> Open to buy is nearly equal

to the credit limit -> customers are spending less using their credit cards

3. Credit limit is also right-skewed which represents - most of the customers have low

credit limits

Based on the three variables, we can conclude that the majority of customers have low

credit limits and are not utilizing their credit cards frequently. Now this statement

justifies the right skewness for all the three variables.

Bivariate Analysis

numeric_data = data.select_dtypes(include=['float64', 'int64'])
plt.figure(figsize=(15, 7))
sns.heatmap(numeric_data.corr(), annot=True, vmin=-1, vmax=1, fmt=".2f", cma
plt.show()

Observations:

Attrition_Flag shows a bit of a negative correlation with Total_Trans_Ct (total

transactions) and Total_Trans_Amt (total transaction amount).

There's a strong positive correlation between Months_on_book and

Customer_Age, Total_Revolving_Bal and Avg_Utilization_Ratio,

Total_Trans_Amt and Total_Trans_Ct.

There's a negative correlation of Total_Relationship_count with Total_Trans_Amt

and Total_Trans_Ct, Avg_Utilization_Ratio with Avg_Open_To_Buy and

Credit_Limit.

Attrition_Flag vs Gender

(pd.crosstab(data['Gender'],data['Attrition_Flag'],normalize='index')*100).p
plt.ylabel('Percentage Attrition %')

Text(0, 0.5, 'Percentage Attrition %')

In [179…

In [180…

Out[180…

Observations:

There's not much difference in attrition percentages for Males and Females.

~20% of both Males and Females attrite.

Attrition_Flag vs Marital_Status

(pd.crosstab(data['Marital_Status'],data['Attrition_Flag'],normalize='index'
plt.ylabel('Percentage Attrition %')

Text(0, 0.5, 'Percentage Attrition %')

In [181…

Out[181…

Observations:

There's not much difference in attrition percentages for Marital_Status.

~20% of Singles, Divorced attrite.

Married customers attrite the least.

Attrition_Flag vs Education_Level

(pd.crosstab(data['Education_Level'],data['Attrition_Flag'],normalize='index
plt.ylabel('Percentage Attrition %')

Text(0, 0.5, 'Percentage Attrition %')

Observations:

Customers with higher education - Doctorates and Post Graduates are the ones

most (~20% for both education levels) attriting.

Attrition_Flag vs Income_Category

(pd.crosstab(data['Income_Category'],data['Attrition_Flag'],normalize='index
plt.ylabel('Percentage Attrition %')

Text(0, 0.5, 'Percentage Attrition %')

In [182…

Out[182…

In [183…

Out[183…

Observations:

The customers from two extreme income groups - Earning less than 40K and

Earning more than 120k+ are the ones attriting the most.

Attrition_Flag vs Card_Category

(pd.crosstab(data['Card_Category'],data['Attrition_Flag'],normalize='index')
plt.ylabel('Percentage Attrition %')

Text(0, 0.5, 'Percentage Attrition %')

In [184…

Out[184…

Observations:

~35% of attrition is amongst the customers with platinum cards followed by ~30%

attrition in Gold cards.

Customers with Platinum and Gold cards are our premium customers and the

highest attrition for these customers is alarming as they are using the premium card

provided by the bank.

Attrition_Flag vs Contacts_Count_12_mon

(pd.crosstab(data['Contacts_Count_12_mon'],data['Attrition_Flag'],normalize=
plt.ylabel('Percentage Attrition %')

Text(0, 0.5, 'Percentage Attrition %')

In [185…

Out[185…

Observations:

Highest attrition is among the customers who interacted the most with the bank.

This signifies that the bank is not able to resolve the problems faced by customers

leading to attrition.

A preliminary step to identify attriting customers would be to look out for customers

who have reached out to them repeatedly.

Attrition_Flag vs Months_Inactive_12_mon

(pd.crosstab(data['Months_Inactive_12_mon'],data['Attrition_Flag'],normalize
plt.ylabel('Percentage Attrition %')

Text(0, 0.5, 'Percentage Attrition %')

In [186…

Out[186…

Observations:

As inactivity increases attrition also increases (2-4 months).

The interpretation from here for 0 months to 6 months is difficult as customers who

recently used the card attrited the most while those who were inactive for 6 months

attrited less.

Attrition_Flag vs Total_Relationship_Count

(pd.crosstab(data['Total_Relationship_Count'],data['Attrition_Flag'],normali
plt.ylabel('Percentage Attrition %')

Text(0, 0.5, 'Percentage Attrition %')

Observations:

Attrition is highest among the customers who are using 1 or 2 products offered by

the bank - together they constitute ~55% of the attrition.

Customers who use more than 3 products are the ones least attriting, such

customers might be more financially stable and actively invest in different services

provided by the bank.

Attrition_Flag vs Dependent_count

(pd.crosstab(data['Dependent_count'],data['Attrition_Flag'],normalize='index
plt.ylabel('Percentage Attrition %')

Text(0, 0.5, 'Percentage Attrition %')

In [187…

Out[187…

In [188…

Out[188…

Observations:

More the number of dependents more is the attrition, more responsibilities might

lead to financial instability in such customers.

Attrition is fairly low for customers with 0 or 1 dependents.

Let's find the percentage of outliers, in each column of the
data, using IQR.

numeric_data = data.select_dtypes(include=['float64', 'int64'])

Calculate quartiles and IQR
Q1 = numeric_data.quantile(0.25)
Q3 = numeric_data.quantile(0.75)
IQR = Q3 - Q1

Find lower and upper bounds for outliers
lower = Q1 - 1.5 * IQR
upper = Q3 + 1.5 * IQR

(
 (data.select_dtypes(include=["float64", "int64"]) < lower)
 | (data.select_dtypes(include=["float64", "int64"]) > upper)
).sum() / len(data) * 100

In [189…

In [190…

Attrition_Flag 16.06596
Customer_Age 0.01975
Dependent_count 0.00000
Months_on_book 3.81159
Total_Relationship_Count 0.00000
Months_Inactive_12_mon 3.26849
Contacts_Count_12_mon 6.21112
Credit_Limit 9.71660
Total_Revolving_Bal 0.00000
Avg_Open_To_Buy 9.50923
Total_Amt_Chng_Q4_Q1 3.91034
Total_Trans_Amt 8.84764
Total_Trans_Ct 0.01975
Total_Ct_Chng_Q4_Q1 3.89059
Avg_Utilization_Ratio 0.00000
dtype: float64

Observations:

After identifying outliers, we can decide whether to remove/treat them or not. It

depends on one's approach, here we are not going to treat them as there will be

outliers in real case scenario (in age, the total amount of transactions, number of

transactions, etc) and we would want our model to learn the underlying pattern for

such customers.

Missing value imputation

We will first replace 'abc' values with 'np.nan' in Income_Category.

We will impute missing values in all 3 columns using mode.

data1 = data.copy()

data1["Income_Category"].replace("abc", np.nan, inplace=True)

data1.isna().sum()

Out[190…

In [191…

In [192…

In [193…

Attrition_Flag 0
Customer_Age 0
Gender 0
Dependent_count 0
Education_Level 1519
Marital_Status 749
Income_Category 1112
Card_Category 0
Months_on_book 0
Total_Relationship_Count 0
Months_Inactive_12_mon 0
Contacts_Count_12_mon 0
Credit_Limit 0
Total_Revolving_Bal 0
Avg_Open_To_Buy 0
Total_Amt_Chng_Q4_Q1 0
Total_Trans_Amt 0
Total_Trans_Ct 0
Total_Ct_Chng_Q4_Q1 0
Avg_Utilization_Ratio 0
dtype: int64

Separating the independent variables (X) and the dependent variable (Y)

X = data1.drop(["Attrition_Flag"], axis=1)
y = data1["Attrition_Flag"]

Splitting the data into 70% train and 30% test set

Some classification problems can exhibit a large imbalance in the distribution of the

target classes: for instance there could be several times more negative samples than

positive samples. In such cases it is recommended to use the stratified sampling

technique to ensure that relative class frequencies are approximately preserved in each

train and validation fold.

Splitting the data
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_stat

Missing Values Imputation

Columns to impute
reqd_col_for_impute = ["Education_Level", "Marital_Status", "Income_Category

Simple Imputer with Mode
imputer = SimpleImputer(strategy="most_frequent")

Fit and transform the train data
X_train[reqd_col_for_impute] = imputer.fit_transform(X_train[reqd_col_for_im

Transform the test data
X_test[reqd_col_for_impute] = imputer.transform(X_test[reqd_col_for_impute])

Out[193…

In [194…

In [195…

In [196…

Checking that no column has missing values in train or test sets
print(X_train.isna().sum())
print("-" * 30)
print(X_test.isna().sum())

Customer_Age 0
Gender 0
Dependent_count 0
Education_Level 0
Marital_Status 0
Income_Category 0
Card_Category 0
Months_on_book 0
Total_Relationship_Count 0
Months_Inactive_12_mon 0
Contacts_Count_12_mon 0
Credit_Limit 0
Total_Revolving_Bal 0
Avg_Open_To_Buy 0
Total_Amt_Chng_Q4_Q1 0
Total_Trans_Amt 0
Total_Trans_Ct 0
Total_Ct_Chng_Q4_Q1 0
Avg_Utilization_Ratio 0
dtype: int64

Customer_Age 0
Gender 0
Dependent_count 0
Education_Level 0
Marital_Status 0
Income_Category 0
Card_Category 0
Months_on_book 0
Total_Relationship_Count 0
Months_Inactive_12_mon 0
Contacts_Count_12_mon 0
Credit_Limit 0
Total_Revolving_Bal 0
Avg_Open_To_Buy 0
Total_Amt_Chng_Q4_Q1 0
Total_Trans_Amt 0
Total_Trans_Ct 0
Total_Ct_Chng_Q4_Q1 0
Avg_Utilization_Ratio 0
dtype: int64

Observations:

All missing values have been treated.

cols = X_train.select_dtypes(include=["object", "category"])
for i in cols.columns:
 print(X_train[i].value_counts())
 print("*" * 30)

In [197…

In [198…

Gender
F 3770
M 3318
Name: count, dtype: int64

Education_Level
Graduate 3247
High School 1425
Uneducated 1031
College 709
Post-Graduate 364
Doctorate 312
Name: count, dtype: int64

Marital_Status
Married 3815
Single 2771
Divorced 502
Name: count, dtype: int64

Income_Category
Less than $40K 3273
$40K - $60K 1254
$80K - $120K 1084
$60K - $80K 974
$120K + 503
Name: count, dtype: int64

Card_Category
Blue 6621
Silver 375
Gold 78
Platinum 14
Name: count, dtype: int64

cols = X_test.select_dtypes(include=["object", "category"])
for i in cols.columns:
 print(X_train[i].value_counts())
 print("*" * 30)

In [199…

Gender
F 3770
M 3318
Name: count, dtype: int64

Education_Level
Graduate 3247
High School 1425
Uneducated 1031
College 709
Post-Graduate 364
Doctorate 312
Name: count, dtype: int64

Marital_Status
Married 3815
Single 2771
Divorced 502
Name: count, dtype: int64

Income_Category
Less than $40K 3273
$40K - $60K 1254
$80K - $120K 1084
$60K - $80K 974
$120K + 503
Name: count, dtype: int64

Card_Category
Blue 6621
Silver 375
Gold 78
Platinum 14
Name: count, dtype: int64

Encoding categorical variables

X_train = pd.get_dummies(X_train, drop_first=True)
X_test = pd.get_dummies(X_test, drop_first=True)
print(X_train.shape, X_test.shape)

(7088, 29) (3039, 29)

Observations:

After encoding there are 29 columns.

X_train.head()

In [200…

In [201…

Customer_Age Dependent_count Months_on_book Total_Relationship_Count

4124 50 1 43 6

4686 50 0 36 3

1276 26 0 13 6

6119 65 0 55 3

2253 46 3 35 6

Model evaluation criterion

The model can make two types of wrong predictions:

1. Predicting a customer will attrite and the customer doesn't attrite.

2. Predicting a customer will not attrite and the customer attrites.

Which case is more important?

Predicting that customer will not attrite but he attrites i.e. losing on a valuable

customer or asset.

How to reduce this loss i.e the need to reduce False Negatives?

Bank would want Recall to be maximized, greater the Recall higher the

chances of minimizing false negatives. Hence, the focus should be on increasing

Recall or minimizing the false negatives or in other words identifying the true

positives (i.e. Class 1) so that the bank can retain their valuable customers by

identifying the customers who are at risk of attrition.

Also, let's create a function to calculate and print the classification report and

confusion matrix so that we don't have to rewrite the same code repeatedly for

each model.

Creating metric function

def metrics_score(actual, predicted):
 print(classification_report(actual, predicted))
 cm = confusion_matrix(actual, predicted)
 plt.figure(figsize=(8,5))
 sns.heatmap(cm, annot=True, fmt='.2f', xticklabels=['Not Attrite', 'Att
 plt.ylabel('Actual')
 plt.xlabel('Predicted')
 plt.show()

Building the model

Out[201…

In [202…

We will be building 4 different models:

Logistic Regression

Support Vector Machine(SVM)

Decision Tree

Random Forest

Logistic Regression Model

Logistic Regression is a supervised learning algorithm that is used for binary

classification problems i.e. where the dependent variable is categorical and has

only two possible values. In logistic regression, we use the sigmoid function to

calculate the probability of an event y, given some features x as:

 P(y)=1/(1 + exp(-x))

Fitting logistic regression model

lg = LogisticRegression()
lg.fit(X_train,y_train)

Let's check the model performance

Checking the performance on the training data

y_pred_train = lg.predict(X_train)

metrics_score(y_train, y_pred_train)

 precision recall f1-score support

 0 0.90 0.96 0.93 5949
 1 0.69 0.44 0.53 1139

 accuracy 0.88 7088
 macro avg 0.79 0.70 0.73 7088
weighted avg 0.87 0.88 0.87 7088

In [203…

Out[203…

In [204…

▾ LogisticRegression

LogisticRegression()

The reported average includes the macro average which averages the unweighted

mean per label, and the weighted average i.e. averaging the support-weighted mean

per label.

In classification, the class of interest is considered the positive class. Here, the class

of interest is 1 i.e. identifying the customers who are at risk of attrition.

Reading the confusion matrix (clockwise):

True Negative (Actual=0, Predicted=0): Model predicts that a customer would not

attrite and the customer does not attrite

False Positive (Actual=0, Predicted=1): Model predicts that a customer would attrite

but the customer does not attrite

False Negative (Actual=1, Predicted=0): Model predicts that a customer would not

attrite but the customer attrites

True Positive (Actual=1, Predicted=1): Model predicts that a customer would attrite

and the customer attrites

Checking the performance on the test dataset

y_pred_test = lg.predict(X_test)

metrics_score(y_test, y_pred_test)

In [205…

 precision recall f1-score support

 0 0.90 0.96 0.93 2551
 1 0.70 0.44 0.54 488

 accuracy 0.88 3039
 macro avg 0.80 0.70 0.74 3039
weighted avg 0.87 0.88 0.87 3039

Observations:

We are getting an accuracy of around 90% on train and test dataset.

However, the recall for this model is only around 44% for class 1 on train and

test dataset.

As the recall is low, this model will not perform well in differentiating out those

customers who have a high chance of leaving the bank, meaning it will eventually

not help in reducing the attrition rate.

As we can see from the Confusion Matrix, this model fails to identify the majority

of customers who will attrite.

Let's check the coefficients and find which variables are leading to attrition and

which can help to reduce the attrition:

Printing the coefficients of logistic regression

cols=X_train.columns

In [206…

coef_lg=lg.coef_

pd.DataFrame(coef_lg,columns=cols).T.sort_values(by=0,ascending=False)

0

Contacts_Count_12_mon 0.31531

Months_Inactive_12_mon 0.24919

Dependent_count 0.20002

Customer_Age 0.11755

Income_Category_Less than $40K 0.05269

Marital_Status_Single 0.04579

Education_Level_Graduate 0.01085

Education_Level_Post-Graduate 0.00870

Education_Level_Doctorate 0.00737

Education_Level_Uneducated 0.00455

Card_Category_Silver 0.00365

Card_Category_Gold 0.00318

Income_Category_ 60K 0.00264

Card_Category_Platinum 0.00175

Avg_Utilization_Ratio 0.00137

Total_Trans_Amt 0.00038

Avg_Open_To_Buy 0.00034

Education_Level_High School -0.00032

Credit_Limit -0.00035

Total_Revolving_Bal -0.00068

Income_Category_ 120K -0.00609

Total_Amt_Chng_Q4_Q1 -0.01180

Income_Category_ 80K -0.01614

Marital_Status_Married -0.01957

Gender_M -0.03225

Total_Ct_Chng_Q4_Q1 -0.05203

Months_on_book -0.09103

Total_Trans_Ct -0.09617

Total_Relationship_Count -0.21321

Out[206…

40K−

80K−

60K−

Observations:

Features which positively affect on the attrition rate are:

Contacts_Count_12_mon

Months_Inactive_12_mon

Dependent_count

Customer_Age

Income_Category_Less than $40K

Marital_Status_Single

Education_Level_Graduate

Education_Level_Post-Graduate

Education_Level_Doctorate

Avg_Utilization_Ratio

Features which negatively affect on the attrition rate are:

Total_Relationship_Count

Total_Trans_Ct

Months_on_book

Total_Ct_Chng_Q4_Q1

Marital_Status_Married

Income_Category_ 60𝐾− 80K

Total_Amt_Chng_Q4_Q1

Observations:

Based on the Logistic Regression model, Contacts_Count_12_mon is the most

important feature in detecting whether a customer would attrite or not. So, the

highest attrition is among the customers who interacted the most with the bank.

This signifies that the bank is not able to resolve the problems faced by customers

leading to attrition

This model also suggests that attrition is dependent on the customers'

activity. As inactivity increases attrition also increases.

Dependent_count is an important variable in predicting the attrition rate. As

more the number of dependents more is the attrition, more responsibilities might

lead to financial instability in such customers.

Education level of customers also have some interesting outcome. Customers with

higher education - Doctorates and Post Graduates are the ones most attriting.

The customers belonging to the income group - Earning less than 40K are the ones

attriting the most.

Other features which appear to affect the chances of attrition are Marital Status, Avg

Utilization ratio.

The model also captures the inverse relation between Total_Relationship_Count

and attrition - suggesting customer who uses more number of products from the

bank are the ones least attriting, such customers might be more financially stable

and actively invest in different services provided by the bank.

Customers who are doing more transactions with the bank have a lower chance

of attrition, a conclusion that makes sense since Less number of transactions leads

to higher attrition.

From Total_Ct_Chng_Q4_Q1 and Total_Amt_Chng_Q4_Q1 it's clear that Customers

who didn't attrite showed less variability across Q4 to Q1 as compared to the ones

who attrited.

The coefficients of the logistic regression model give us the log of odds, which is hard

to interpret in the real world. We can convert the log of odds into real odds by taking its

exponential.

Finding the odds
odds = np.exp(lg.coef_[0])

Adding the odds to a dataframe and sorting the values
pd.DataFrame(odds, X_train.columns, columns=['odds']).sort_values(by='odds',

In [207…

odds

Contacts_Count_12_mon 1.37069

Months_Inactive_12_mon 1.28299

Dependent_count 1.22143

Customer_Age 1.12474

Income_Category_Less than $40K 1.05410

Marital_Status_Single 1.04686

Education_Level_Graduate 1.01091

Education_Level_Post-Graduate 1.00874

Education_Level_Doctorate 1.00739

Education_Level_Uneducated 1.00456

Card_Category_Silver 1.00366

Card_Category_Gold 1.00319

Income_Category_ 60K 1.00265

Card_Category_Platinum 1.00176

Avg_Utilization_Ratio 1.00137

Total_Trans_Amt 1.00038

Avg_Open_To_Buy 1.00034

Education_Level_High School 0.99968

Credit_Limit 0.99965

Total_Revolving_Bal 0.99932

Income_Category_ 120K 0.99392

Total_Amt_Chng_Q4_Q1 0.98827

Income_Category_ 80K 0.98399

Marital_Status_Married 0.98062

Gender_M 0.96826

Total_Ct_Chng_Q4_Q1 0.94930

Months_on_book 0.91299

Total_Trans_Ct 0.90831

Total_Relationship_Count 0.80799

Observations

Out[207…

40K−

80K−

60K−

The odds of a customers contacting with the bank more to attrite are 1.3 times the

odds of one who is not, probably due to the fact that the bank is not able to resolve

the problems faced by customers leading to attrition.

The odds of a customer being inactive to attrite are 1.2 times the odds of a

customer who is actively in touch with bank.

The odds of a customer with more dependent attriting are 1.2 times the odds of a

customer with less or no dependent.

Precision-Recall Curve for logistic regression

Precision-Recall curves summarize the trade-off between the true positive rate

and the positive predictive value for a predictive model using different probability

thresholds.

Predict_proba gives the probability of each observation belonging to each

y_scores_lg=lg.predict_proba(X_train)

precisions_lg, recalls_lg, thresholds_lg = precision_recall_curve(y_train, y

Plot values of precisions, recalls, and thresholds
plt.figure(figsize=(10,7))
plt.plot(thresholds_lg, precisions_lg[:-1], 'b--', label='precision')
plt.plot(thresholds_lg, recalls_lg[:-1], 'g--', label = 'recall')
plt.xlabel('Threshold')
plt.legend(loc='upper left')
plt.ylim([0,1])
plt.show()

In [208…

Calculating the exact threshold where precision and recall are equal.

for i in np.arange(len(thresholds_lg)):
 if precisions_lg[i]==recalls_lg[i]:
 print(thresholds_lg[i])

0.34806960434560535

Observation:

We can see that precision and recall are balanced for a threshold of about ~0.35.

Let's find out the performance of the model at this threshold

optimal_threshold=.35
y_pred_train = lg.predict_proba(X_train)
metrics_score(y_train, y_pred_train[:,1]>optimal_threshold)

 precision recall f1-score support

 0 0.92 0.93 0.92 5949
 1 0.61 0.60 0.61 1139

 accuracy 0.87 7088
 macro avg 0.77 0.76 0.77 7088
weighted avg 0.87 0.87 0.87 7088

In [209…

In [210…

Observations:

The model performance has improved. The recall has increased significantly for

class 1.

Let's check the performance on the test data.

optimal_threshold1=.35
y_pred_test = lg.predict_proba(X_test)
metrics_score(y_test, y_pred_test[:,1]>optimal_threshold1)

 precision recall f1-score support

 0 0.92 0.93 0.93 2551
 1 0.62 0.60 0.61 488

 accuracy 0.88 3039
 macro avg 0.77 0.77 0.77 3039
weighted avg 0.88 0.88 0.88 3039

In [211…

Observation:

The model is giving a similar performance on the test and train data i.e. the

model is giving a generalized performance.

The recall of the test data has increased significantly while at the same time, the

precision has decreased slightly, which is to be expected while adjusting the

threshold.

The average recall and precision for the model are good but let's see if we can get

better performance using other algorithms.

Support Vector Machines

To Speed-Up SVM training.

scaling = MinMaxScaler(feature_range=(-1,1)).fit(X_train)
X_train_scaled = scaling.transform(X_train)
X_test_scaled = scaling.transform(X_test)

Let's build the models using the two of the widely used kernel functions:

1. Linear Kernel

2. RBF Kernel

Linear Kernel

In [212…

Fitting SVM
svm = SVC(kernel = 'linear') # Linear kernel or linear decision boundary
model = svm.fit(X = X_train_scaled, y = y_train)

y_pred_train_svm = model.predict(X_train_scaled)

metrics_score(y_train, y_pred_train_svm)

 precision recall f1-score support

 0 0.92 0.97 0.95 5949
 1 0.80 0.58 0.67 1139

 accuracy 0.91 7088
 macro avg 0.86 0.77 0.81 7088
weighted avg 0.90 0.91 0.90 7088

Checking performance on the test data
y_pred_test_svm = model.predict(X_test_scaled)
metrics_score(y_test, y_pred_test_svm)

 precision recall f1-score support

 0 0.92 0.97 0.94 2551
 1 0.78 0.56 0.65 488

 accuracy 0.90 3039
 macro avg 0.85 0.76 0.80 3039
weighted avg 0.90 0.90 0.90 3039

In [213…

In [214…

In [215…

SVM model with linear kernel is not overfitting as the accuracy is around 90% for

both train and test dataset.

Recall of class 1 for the model is only around 55% which implies our model will not

correctly predict the customers who are likely to attrite.

The precision is quite good and the model will help to find true positive and will save

the cost and energy of the bank.

RBF Kernel

svm_rbf=SVC(kernel='rbf',probability=True)
svm_rbf.fit(X_train_scaled,y_train)
y_scores_svm=svm_rbf.predict_proba(X_train_scaled) # Predict_proba gives the

precisions_svm, recalls_svm, thresholds_svm = precision_recall_curve(y_train

Plot values of precisions, recalls, and thresholds
plt.figure(figsize=(10,7))
plt.plot(thresholds_svm, precisions_svm[:-1], 'b--', label='precision')
plt.plot(thresholds_svm, recalls_svm[:-1], 'g--', label = 'recall')
plt.xlabel('Threshold')
plt.legend(loc='upper left')
plt.ylim([0,1])
plt.show()

In [216…

Calculating the exact threshold where precision and recall are equal.
for i in np.arange(len(thresholds_svm)):
 if precisions_svm[i]==recalls_svm[i]:
 print(thresholds_svm[i])

0.3122015685746674

optimal_threshold1=0.31
y_pred_train = svm_rbf.predict_proba(X_train_scaled)

metrics_score(y_train, y_pred_train[:,1]>optimal_threshold1)

 precision recall f1-score support

 0 0.96 0.96 0.96 5949
 1 0.77 0.77 0.77 1139

 accuracy 0.93 7088
 macro avg 0.86 0.86 0.86 7088
weighted avg 0.93 0.93 0.93 7088

In [217…

In [218…

y_pred_test = svm_rbf.predict_proba(X_test_scaled)

metrics_score(y_test, y_pred_test[:,1]>optimal_threshold1)

 precision recall f1-score support

 0 0.94 0.93 0.94 2551
 1 0.67 0.71 0.69 488

 accuracy 0.90 3039
 macro avg 0.80 0.82 0.81 3039
weighted avg 0.90 0.90 0.90 3039

In [219…

Observations:

At the optimal threshold of .31, the model performance has improved significantly.

The recall has improved from 0.55 to .77 which is a ~20% increase and the model is

giving good generalized results.

Moreover, the kernel used to create this is rbf, hence model is performing good with

non-linear kernel.

As the recall is good, this model will perform well in differentiating out those

customers who have a high chance of leaving the bank, meaning it will eventually

help in reducing the attrition rate.

Decision Tree

Building decision tree model

model_dt= DecisionTreeClassifier(random_state=1,max_depth=8)
model_dt.fit(X_train, y_train)

Let's check the model performance of decision tree

In [220…

Out[220… ▾ DecisionTreeClassifier

DecisionTreeClassifier(max_depth=8, random_state=1)

Checking performance on the training dataset

pred_train_dt = model_dt.predict(X_train)

metrics_score(y_train, pred_train_dt)

 precision recall f1-score support

 0 0.98 0.99 0.99 5949
 1 0.93 0.92 0.93 1139

 accuracy 0.98 7088
 macro avg 0.96 0.95 0.96 7088
weighted avg 0.98 0.98 0.98 7088

Observation:

Model has performed very well on the training set.

As we know a decision tree will continue to grow and classify each data point

correctly if no restrictions are applied as the trees will learn all the patterns in the

training set.

Let's check the performance on test data to see if the model is overfitting.

pred_test_dt = model_dt.predict(X_test)
metrics_score(y_test, pred_test_dt)

In [221…

In [222…

 precision recall f1-score support

 0 0.97 0.96 0.97 2551
 1 0.82 0.82 0.82 488

 accuracy 0.94 3039
 macro avg 0.89 0.89 0.89 3039
weighted avg 0.94 0.94 0.94 3039

Observation:

The decision tree model is slightly overfitting the data here.

We can tune the hyperparameters to increase the performance and reduce

overfitting.

Let's visualize the decision tree and observe the decision rules:

features = list(X_train.columns)

plt.figure(figsize=(20,20))
from sklearn import tree
tree.plot_tree(model_dt,feature_names=features,max_depth =4, filled=True,fon
plt.show()

In [223…

Importance of features in the tree building

feature_names = list(X_train.columns)
importances = model_dt.feature_importances_
indices = np.argsort(importances)

plt.figure(figsize=(8, 8))
plt.title("Feature Importances")
plt.barh(range(len(indices)), importances[indices], color="violet", align="c
plt.yticks(range(len(indices)), [feature_names[i] for i in indices])
plt.xlabel("Relative Importance")
plt.show()

In [224…

Observation:

So,Total_Trans_Ct is the most important feature followed by

Total_Revolving_Bal and Total_Trans_Amt which makes sense. Customers who

are doing more transactions with the bank have lower chance of attrition.

Total_Ct_Chng_Q4_Q1, Total_Relationship_Count, Total_Amt_Chng_Q4_Q1

are also important factors .

Random Forest

Fitting the Random Forest classifier on the training data
rf_estimator = RandomForestClassifier(random_state = 1)

rf_estimator.fit(X_train, y_train)

Checking performance on the training data
y_pred_train_rf = rf_estimator.predict(X_train)

In [225…

Out[225…

In [226…

▾ RandomForestClassifier

RandomForestClassifier(random_state=1)

metrics_score(y_train, y_pred_train_rf)

 precision recall f1-score support

 0 1.00 1.00 1.00 5949
 1 1.00 1.00 1.00 1139

 accuracy 1.00 7088
 macro avg 1.00 1.00 1.00 7088
weighted avg 1.00 1.00 1.00 7088

Observation:

For all the metrics in the training dataset, the Random Forest gives a 100% score.

Checking performance on the testing data
y_pred_test_rf = rf_estimator.predict(X_test)

metrics_score(y_test, y_pred_test_rf)

 precision recall f1-score support

 0 0.96 0.99 0.97 2551
 1 0.92 0.79 0.85 488

 accuracy 0.96 3039
 macro avg 0.94 0.89 0.91 3039
weighted avg 0.95 0.96 0.95 3039

In [227…

Observations:

The Random Forest classifier seems to be overfitting the training data. The recall

on the training data is 1, while the recall on the test data is only ~ 0.80 for class 1.

Precision is high for the test data as well.

Let's check the feature importance of the Random Forest

importances = rf_estimator.feature_importances_

columns = X_train.columns

importance_df = pd.DataFrame(importances, index = columns, columns = ['Impor

plt.figure(figsize = (13, 13))

sns.barplot(x = importance_df.Importance, y = importance_df.index)

<Axes: xlabel='Importance', ylabel='None'>

In [228…

Out[228…

Observations:

The Random Forest further verifies the results from the decision tree that the most

important features are Total_Trans_ct and Total_Trans_Amt .

Business Recommendations:

We have been able to build a predictive model:

a) that the bank can deploy to identify customers who are at risk of attrition.

b) that the bank can use to find the key causes that drive attrition.

c) based on which the bank can take appropriate actions to build better retention

policies for customers.

Factors that drive attrition - Total_Trans_Ct, Total_Revolving_Bal, Total_Trans_Amt,

Total_Relationship_Count

Total_Trans_Ct: Less number of transactions in a year leads to attrition of a

customer - to increase the usage of cards the bank can provide offers like

cashback, special discounts on the purchase of something, etc so that customers

feel motivated to use their cards.

Total_Revolving_Bal: Customers with less total revolving balance are the ones who

attrited, such customers must have cleared their dues and opted out of the credit

card service. After the customer has cleared the dues bank can ask for feedback on

their experience and get to the cause of attrition.

Total_Trans_Amt: Less number of transactions can lead to less transaction amount

and eventually leads to customer attrition - Bank can provide offers on the purchase

of costlier items which in turn will benefit the customers and bank both.

Total_Relationship_Count: Attrition is highest among the customers who are using 1

or 2 products offered by the bank - together they constitute ~55% of the attrition -

Bank should investigate here to find the problems customers are facing with these

products. Customer support, or more transparency can help in retaining customers.

Female customers should be the target customers for any kind of marketing

campaign as they are the ones who utilize their credits, make more and higher

amount transactions. But their credit limit is less, so increasing the credit limit for

such customers can profit the bank.

Months_Inactive: As inactivity increases the attrition also increases. 2-4 months of

inactivity are the biggest contributors of attrition - Bank can send automated

messages to engage customers, these messages can be about their monthly

activity, new offers or services, etc.

Highest attrition is among the customers who interacted/reached out the most

with/to the bank, this indicates that the bank is not able to resolve the problems

faced by customers leading to attrition - a feedback collection system can be set up

to check if the customers are satisfied with the resolution provided, if not, the bank

should act upon it accordingly.

