
MAKING SENSE OF UNSTRUCTURED DATA

Code update by Juan David Correa astropema@google.com Feb 2025

Added Graphical Output and Modified Code to use updated libraries.

Case Study - Data Analysis with Human-Generated
Text

Instructor: Tamara Broderick

In this document, we walk through some tips to help you with doing your own analysis on

MIT EECS faculty data using stochastic variational inference on LDA.

1. Scraping your own dataset

2. Pre-processing the dataset

3. Implementing your own LDA code

Implementing your own SVI-LDA code

Latent Dirichlet allocation (LDA) is a generative statistical model in natural language

processing, and can be used to discover ‘topicsʼ in a large set of documents. This is first

presented by David Blei, Andrew Ng, and Michael Jordan.

The key idea is that if we see a ‘topicʼ as a collection of certain words, we can look at

each document as a collection of topics, the proportion of each topic depends on the

proportion of words in the document that are associated with that topic. For example,

the ‘sportsʼ topic may consist of the words: tennis, football, gymnastics. When given a

set of documents, we can calculate the posterior distribution for the topics. In the

original LDA paper, this is done using a coordinate descent algorithm for mean-field

variational inference, and later on researchers also used Gibbs Sampling and expectation

propagation. In this tutorial we will be looking only at Stochastic Variational Inference for

LDA. SVI was first published in 2013 by Matt Hoffman, David Blei, Chong Wang, and

John Paisley.

Traditional coordinate-descent variational inference requires each update to be carried

out with all of the data, and these updates become inefficient when the dataset gets

large as each update scales linearly with the size of the data. The key idea with SVI is to

update global variational parameters more frequently. Using local and global parameters,

and given the dataset with a known number of datapoints, we could randomly take 1 data

point at a time, update the local parameter, and project the change into the global

parameters. Like traditional coordinate-descent variational inference, this is done until

the result converges, i.e., the change in the global parameters is smaller than a certain

value. The implementation we will be talking about is a naive implementation of the

algorithm described in the original paper

. Variable Notation

Here we provide a brief overview of the input variables for LDA and SVI. Variables that

can be set are the following:

• λ: what we want in the end (the posterior distribution for the topics for each word

• vocab: this is the overall vocabulary we will have in the docs

• K: this is the number of topics we want to get in the end

• D: this is the total number of documents

• α: parameter for per-document topic distribution

• η: parameter for per-topic vocab distribution2017 © Massachusetts Institute of

Technology

• τ: delay that down weights early iterations

• κ: forgetting rate, controls how quickly old information is forgotten; the larger the

value, the slower it is.

• max:iterations: the number of maximum iterations the updates should go on for. We

usually set a check such that if the difference in two consecutive values of λ is smaller

than a certain value, we say the algorithm has converged. However, sometimes we could

set this certain value too small, so we set a maximum iteration value to avoid updates

running forever.

LDA Generative Model

We review the LDA generative model here. LDA assumes each document has K topics

with different proportions. It models a corpus w of size D as follows:

• Draw distribution over vocabulary βk ~ Dirichlet(η) for topics k ∈ {1…K}

• For each document d ∈ {1…D} :

– Draw topic proportions θd ~ Dirichlet(α);

– For each word 𝑊𝑑 𝑛 in the document:

Draw topic indicator 𝑍𝑑 𝑛~ Multinomial (θd)

Draw word 𝑊𝑑 𝑛 ~ Multinomial (β𝑍𝑑𝑛)

Note that this model follows the ‘bag of wordsʼ assumption, such that given the topic

proportions, each word drawn is independent of any other words in the document.

Libaries

from bs4 import BeautifulSoup
from requests import get
import nltk
from nltk import word_tokenize
nltk.download('stopwords')
nltk.download('punkt')
from nltk.corpus import stopwords
import collections
import pandas as pd

[nltk_data] Downloading package stopwords to
[nltk_data] /Users/obaozai/nltk_data...
[nltk_data] Package stopwords is already up-to-date!
[nltk_data] Downloading package punkt to /Users/obaozai/nltk_data...
[nltk_data] Package punkt is already up-to-date!
The history saving thread hit an unexpected error (OperationalError('attempt
to write a readonly database')).History will not be written to the database.

LDA Generative Model
Priors:

Distribution over vocabulary for topic k in {1..K}: beta[k] ~ Dirichlet(V, eta)

Distribution over topics (latent variables): theta ~ Dirichlet(K, alpha)

For each document:

Choose number of words: N ~ Poisson(ξ)

For each of the N words w:

Choose a topic: z ~ Cat(K, theta)

Choose a word: w ~ Cat(V, beta[z])

Note: This model follows the ‘bag of wordsʼ assumption, such that given the topic

proportions, each word drawn is independent of any other words in the document.

Graphical representation

Variational Inference

To use variational inference, the edges between θ (theta), z and w are removed to make

inference on LDA model tractable.

In [17]:

Variational Inference

Global Variables

faculty_url = 'https://www.eecs.mit.edu/role/faculty/?fwp_role=faculty'
arXiv_format = 'arxiv.org/find/{}/1/au:+{}_{}/0/1/0/all/0/1' # arxiv.org/fin
search_url_format = 'https://arxiv.org/search/?query="{}"&searchtype=author'
subjects = {'Computer Science': 'Computer Science',
 'Electrical Engineering': 'Electrical Engineering and Systems Sc
 'Physics': 'Physics'}
all_papers_columns = ['Name', 'Abstract']

Web Sraping

1. Get Facultys

Using BeautifulSoup (https://www.crummy.com/software/BeautifulSoup/), and by

analyzing the structure of the source code of arXiv, we could scrape the name list of MIT

EECS faculty members. Using this information, we could list the query we send to arXiv.

A possible format for the arXiv search for papers by authors is the following:

arxiv.org/find/(subject)/1/au:+(lastname)_(initial)/0/1/0/all/0/1

You could therefore adapt the names you scraped, and query through all the relevant

arXiv search pages.

Within the arXiv source code, look for < class span=list-identifier >, which will give the

identifier for the papers listed in your query results. Similarly look for the tag for the

“Abstract” within each paper and scrape the abstract for each paper you find.

Note that you might want to scrape more information than you need and then do some

local processing with the text you have instead.

from urllib.request import Request, urlopen
faculty_url = "https://www.eecs.mit.edu/role/faculty/?fwp_role=faculty"
hdr = {'User-Agent': 'Mozilla/5.0'}
req = Request(faculty_url,headers=hdr)
page = urlopen(req)
faculty_page_content = BeautifulSoup(page,'html.parser')
#print(faculty_page_content)

names=[]
names = [x.text for x in faculty_page_content.find_all("h5")]

2. Scrape Papers

In [18]:

In [19]:

In [20]:

https://www.crummy.com/software/BeautifulSoup/

#scrapping abstracts
def scrapeArXiV(names):
 papers = list()
 for name in names:
 search_url = search_url_format.format(name.replace(' ', '+'))
 papers_author = get(search_url)
 papers_author_content = BeautifulSoup(papers_author.content, 'html.p
 papers_author_body = papers_author_content.body
 results = papers_author_body.find_all("li", class_="arxiv-result")
 abstracts = [result.find("span", class_="abstract-full") for result

 abstracts_content = [abstract.a.unwrap() for abstract in abstracts]
 abstracts_content = [abstract.contents[0] for abstract in abstracts]

 if abstracts_content:
 papers = papers + abstracts_content

 return papers

papers = scrapeArXiV(names)

Text Preprocessing
Pre-processing the dataset

In the original work we have processed the data as raw documents as the dataset size

was small. However if you want to use Matthew Hoffmanʼs original SVI code instead, that

code takes a text file with a specific format. Once you have each abstract in a separate

text file, you may find the 2017 © Massachusetts Institute of Technology following

Python packages useful: io, collections, nltk. It is good practice to keep your dataset in

its own folder, so io can be used to access that folder using a constant (relative) path.

Read each file and use nltk.tokenize to tokenize each chunk of text. Use collections to

process each abstract using a Counter/Dictionary, before writing the counts of words of

each individual abstract as a line in the text file.

def word_cleaning_and_count(s):
 s_lower = s.lower()

 cleaning_set = set(stopwords.words('english'))
 tokens = word_tokenize(s_lower)
 tokens = [token for token in tokens if token.isalpha()]
 word_dict = dict(collections.Counter(tokens))
 for key in cleaning_set:
 word_dict.pop(key, None)
 return word_dict

papers_word_dict = [word_cleaning_and_count(paper) for paper in papers]
dup_keys = []
for i in range(len(papers_word_dict)):

In [21]:

In [22]:

In [23]:

In [24]:

 dup_keys = dup_keys + list(papers_word_dict[i].keys())

vocab = list(collections.Counter(dup_keys).keys())
lookup_table = dict(zip(vocab, range(len(vocab))))

Save data

import json
with open('data/names', 'w') as fout:
 json.dump(names, fout)
with open('data/papers', 'w') as fout:
 json.dump(papers, fout)
with open('data/papers_word_dict', 'w') as fout:
 json.dump(papers_word_dict, fout)
with open('data/vocab', 'w') as fout:
 json.dump(vocab, fout)
with open('data/lookup_table', 'w') as fout:
 json.dump(lookup_table, fout)

LDA

#similar to k in K-means clustering. We want to divide abstracts into 5 topi
no_topics = 5

Load data

Please make an empty folder named data in your working directory

import json
with open('data/names', 'r') as json_file:
 names = json.load(json_file)
with open('data/papers', 'r') as json_file:
 papers = json.load(json_file)
with open('data/papers_word_dict', 'r') as json_file:
 papers_word_dict = json.load(json_file)
with open('data/vocab', 'r') as json_file:
 vocab = json.load(json_file)
with open('data/lookup_table', 'r') as json_file:
 lookup_table = json.load(json_file)

vocab_size = len(vocab)

Using sklearn

doc_vecs = []
for paper in papers_word_dict:
 doc_vec = [0 for _ in range(vocab_size)]
 for token, occurs in paper.items():

In [25]:

In [26]:

In [27]:

In [28]:

 doc_vec[lookup_table[token]] = occurs
 doc_vecs.append(doc_vec)

from sklearn.decomposition import LatentDirichletAllocation

Run the LDA
lda = LatentDirichletAllocation(n_components=no_topics, learning_method='onl

def display_topics(model, feature_names, no_top_words):
 for topic_idx, topic in enumerate(model.components_):
 print('Topic %d:' % (topic_idx))
 print(' '.join([vocab[i] for i in topic.argsort()[:-no_top_words - 1

#using top 10 words present in each topic
no_top_words = 10
display_topics(lda, doc_vecs, no_top_words)

Topic 0:
channel quantum network error communication memory performance codes capacit
y decoding
Topic 1:
quantum optical materials energy using devices systems magnetic applications
material
Topic 2:
system design data users robot agents planning user task agent
Topic 3:
models data model learning training performance tasks methods language neura
l
Topic 4:
algorithm n algorithms problem show time graph model problems data

Topic 0: It may contain abstracts from traditional computer science

Topic 1: It may contain abstracts from modern computer science and Graph

algorithms

Topic 2: It may contain abstracts from machine learning and deep learning.

Topic 3: It may contain abstracts belonging to modern computer science and

machine learning.

Topic 4: It may contain topics from quantum theory and material science.

End-to-end Code (SVILDA algorithm)

doc_vecs = []
for paper in papers_word_dict:
 wordslist = []
 countslist = []
 for token, occurs in paper.items():
 wordslist.append(lookup_table[token])
 countslist.append(occurs)
 doc_vecs.append((wordslist, countslist))

from svilda import SVILDA
iterations = 10000

In [29]:

In [30]:

In [31]:

lda = SVILDA(vocab, no_topics, len(doc_vecs), 0.1, 0.01, 1, 0.75, iterations
lda.runSVI(doc_vecs)

ITERATION 0 running document number 1650
ITERATION 100 running document number 1333
ITERATION 200 running document number 117
ITERATION 300 running document number 1590
ITERATION 400 running document number 318
ITERATION 500 running document number 2679
ITERATION 600 running document number 3552
ITERATION 700 running document number 3316
ITERATION 800 running document number 3819
ITERATION 900 running document number 3498
ITERATION 1000 running document number 1935
ITERATION 1100 running document number 3091
ITERATION 1200 running document number 1757
ITERATION 1300 running document number 3634
ITERATION 1400 running document number 2802
ITERATION 1500 running document number 3444
ITERATION 1600 running document number 3159
ITERATION 1700 running document number 974
ITERATION 1800 running document number 2620
ITERATION 1900 running document number 2994
ITERATION 2000 running document number 2883
ITERATION 2100 running document number 2993
ITERATION 2200 running document number 23
ITERATION 2300 running document number 3137
ITERATION 2400 running document number 1037
ITERATION 2500 running document number 1734
ITERATION 2600 running document number 2169
ITERATION 2700 running document number 1217
ITERATION 2800 running document number 758
ITERATION 2900 running document number 3438
ITERATION 3000 running document number 3324
ITERATION 3100 running document number 863
ITERATION 3200 running document number 929
ITERATION 3300 running document number 424
ITERATION 3400 running document number 3475
ITERATION 3500 running document number 54
ITERATION 3600 running document number 2432
ITERATION 3700 running document number 2149
ITERATION 3800 running document number 2728
ITERATION 3900 running document number 1721
ITERATION 4000 running document number 1985
ITERATION 4100 running document number 2782
ITERATION 4200 running document number 1104
ITERATION 4300 running document number 2340
ITERATION 4400 running document number 877
ITERATION 4500 running document number 1975
ITERATION 4600 running document number 3107
ITERATION 4700 running document number 2016
ITERATION 4800 running document number 3432
ITERATION 4900 running document number 2899
ITERATION 5000 running document number 354
ITERATION 5100 running document number 3380
ITERATION 5200 running document number 3598
ITERATION 5300 running document number 553
ITERATION 5400 running document number 2083
ITERATION 5500 running document number 1027

ITERATION 5600 running document number 2117
ITERATION 5700 running document number 2691
ITERATION 5800 running document number 2025
ITERATION 5900 running document number 495
ITERATION 6000 running document number 1101
ITERATION 6100 running document number 242
ITERATION 6200 running document number 3872
ITERATION 6300 running document number 3391
ITERATION 6400 running document number 3528
ITERATION 6500 running document number 494
ITERATION 6600 running document number 2198
ITERATION 6700 running document number 150
ITERATION 6800 running document number 1717
ITERATION 6900 running document number 1927
ITERATION 7000 running document number 807
ITERATION 7100 running document number 3657
ITERATION 7200 running document number 2235
ITERATION 7300 running document number 3548
ITERATION 7400 running document number 545
ITERATION 7500 running document number 1251
ITERATION 7600 running document number 2420
ITERATION 7700 running document number 1895
ITERATION 7800 running document number 985
ITERATION 7900 running document number 2504
ITERATION 8000 running document number 1078
ITERATION 8100 running document number 2436
ITERATION 8200 running document number 1594
ITERATION 8300 running document number 1596
ITERATION 8400 running document number 1364
ITERATION 8500 running document number 1840
ITERATION 8600 running document number 3666
ITERATION 8700 running document number 190
ITERATION 8800 running document number 396
ITERATION 8900 running document number 1256
ITERATION 9000 running document number 2624
ITERATION 9100 running document number 1671
ITERATION 9200 running document number 1690
ITERATION 9300 running document number 1783
ITERATION 9400 running document number 2160
ITERATION 9500 running document number 1245
ITERATION 9600 running document number 4
ITERATION 9700 running document number 1909
ITERATION 9800 running document number 2081
ITERATION 9900 running document number 3755

def display_topics(model, feature_names, no_top_words):
 for topic_idx, topic in enumerate(model._lambda):
 print('Topic %d:' % (topic_idx))
 print(' '.join([vocab[i] for i in topic.argsort()[:-no_top_words - 1

no_top_words = 10
display_topics(lda, doc_vecs, no_top_words)

In [32]:

Topic 0:
algorithm n work propose demonstrate language set design quantum provide
Topic 1:
models present tasks training systems given space image linear often
Topic 2:
model using problem results new approach graph networks use large
Topic 3:
learning show also two number information network neural k different
Topic 4:
data algorithms performance time method paper methods problems framework fir
st

Topic 0: It may contain abstracts from machine learning and deep learning.

Topic 1: It may contain abstracts from machine learning algorithms.

Topic 2: IIt may contain abstracts from modern computer science and machine

learning algorithms

Topic 3: It may contain abstracts from machine learning algorithms and Graph

algorithms

Topic 4: It may contain topics from computer science systems.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import networkx as nx
import random
from wordcloud import WordCloud
from collections import Counter
from sklearn.feature_extraction.text import TfidfVectorizer
from nltk.util import bigrams

Load text from notebook (Make sure to replace 'notebook_data' with your ac
text_content = "\n".join([cell["source"] for cell in notebook_data["cells"]

Word Cloud: Most Prominent Words
wordcloud = WordCloud(width=800, height=400, background_color="white", color
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.title("Prominent Words in Notebook Content", fontsize=14)
plt.show()

Word Frequency Bar Chart
words = text_content.split()
word_counts = Counter(words)
common_words = word_counts.most_common(20)
word_freq_df = pd.DataFrame(common_words, columns=["Word", "Frequency"])

plt.figure(figsize=(12, 6))
sns.barplot(x="Frequency", y="Word", data=word_freq_df, palette="coolwarm")
plt.title("Top 20 Most Frequent Words in Notebook")
plt.xlabel("Frequency")
plt.ylabel("Words")

In [35]:

plt.show()

Word Clusters Based on Frequency (Randomized Positioning)
top_words = word_counts.most_common(30) # Get top 30 words
df_clusters = pd.DataFrame(top_words, columns=["word", "frequency"])

Assign random x, y positions for visualization
df_clusters["x"] = [random.uniform(0, 1) for _ in range(len(df_clusters))]
df_clusters["y"] = [random.uniform(0, 1) for _ in range(len(df_clusters))]

plt.figure(figsize=(12, 7))
sns.scatterplot(x="x", y="y", size="frequency", data=df_clusters, sizes=(100

Add word labels
for i, txt in enumerate(df_clusters["word"]):
 plt.annotate(txt, (df_clusters["x"][i], df_clusters["y"][i]), fontsize=1

plt.title("Word Clusters Based on Frequency (Randomized Positioning)")
plt.xlabel("Random X Position")
plt.ylabel("Random Y Position")
plt.show()

Bigram Network Graph (Common Word Pairs)
word_tokens = text_content.split()
bigram_list = list(bigrams(word_tokens))
bigram_counts = Counter(bigram_list).most_common(30)

G = nx.Graph()
for (word1, word2), freq in bigram_counts:
 G.add_edge(word1, word2, weight=freq)

plt.figure(figsize=(12, 7))
pos = nx.spring_layout(G, k=0.5)
nx.draw_networkx_nodes(G, pos, node_color="lightblue", node_size=1000)
nx.draw_networkx_edges(G, pos, width=[G[u][v]['weight'] / 2 for u, v in G.ed
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold")
plt.title("Bigram Network Graph (Most Common Word Pairs)")
plt.show()

/var/folders/q0/xfs5xjxx50xdjh4tzn1psdnw0000gn/T/ipykernel_61032/3045815497.
py:30: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed
in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the
same effect.

 sns.barplot(x="Frequency", y="Word", data=word_freq_df, palette="coolwar
m")

Conclusion

LDA gives better result as compared to SVILDA.

LDA is able to group topics more precisely into different and meaningful clusters.

The research papers are mostly related to algorithms, core computer science and

machine/deep learning.

Other than computer science the topics are related to Quantum theory and material

science.

