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Binomial Distribution

Problem statement

80% of all the visitors to Lavista Museum end up buying souvenirs from the souvenir shop at

1. Find the probability that every visitor will end up buying from the souvenir shop.

 2. Find the probability that a maximum of 7 visitors will buy souvenirs from the souvenir shop

Let's check first whether we satisfy the assumptions of the binomial distribution.

  There are only two possible outcomes (success or failure) for each trial –

 A visitor will buy souvenirs from the souvenir shop or not (yes or no).  The

number of trials (n) is fixed - There are 10 visitors in the sample.

 Each trial is independent of the other trials -

 It is reasonable to assume that the buying activity of visitors is independent.

 The probability of success (p) is the same for each trial -

 The probability of success for each visitor is 0.8.

Let's import the libraries

# import the important packages
import pandas as pd  # library used for data manipulation and analysis
import numpy as np  # library used for working with arrays
import matplotlib.pyplot as plt  # library for plots and visualizations
import seaborn as sns  # library for visualizations
%matplotlib inline

import scipy.stats as stats  # this library contains a large number of proba

# to suppress warnings
import warnings
warnings.filterwarnings('ignore')

Let's estimate the probability distribution of visitors
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# declare the sample size in which variable n represents the number of visit
n = 10

# declare p which represents the probability of success, i.e., the probabili
p = 0.80

# declare different possible number of visitors selected in a numpy array
k = np.arange(0,11)
k

array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10])

The probability function of Binomial Distribution provides the probability for  x  number

of successes from n trials where  p is the probability of success

Here, we know that:

n ( number of visitors selected randomly ) = 10

p ( probability of success i.e., the probability that a visitor will end up buying a

souvenir) = 0.80

q ( probability of failure i.e., the probability that a visitor will not end up buying a

souvenir) = 1 - 0.80 = 0.20

x ( number of successes ) = 10

We will use binom.pmf() to calculate this probability function which provides the

probability for the number of visitors (out of n=10) that will end up buying souvenirs from

the souvenir shop.

# import the required function
from scipy.stats import binom

# use the binom.pmf() function to generate the probability distribution
binomial = binom.pmf(k=k, n=n, p=p)

binomial

array([1.02400000e-07, 4.09600000e-06, 7.37280000e-05, 7.86432000e-04,
      5.50502400e-03, 2.64241152e-02, 8.80803840e-02, 2.01326592e-01,
      3.01989888e-01, 2.68435456e-01, 1.07374182e-01])

As you can see binomial is the array of probabilities for the different number of

successes. Let us visualize the same in the following plot.

# plot the distribution
plt.bar(k, binomial) # make a bar plot
plt.title("Binomial: n=%i , p=%.2f" % (n, p), fontsize=15) # set the title
plt.xlabel("Number of Successes") # set the x-axis label
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plt.ylabel("Probability of Successes") # set the y-axis label
plt.show() # display the plot

The last element of this binomial array represents the probability when the number of

successes is 10 (which means that all 10 visitors (out of 10 selected randomly) will buy

souvenirs from the souvenir shop).

binomial[10]

0.10737418240000006

The above probability shows that the probability of exactly 10 successes is  ~ 0.11.

Now, we are interested in knowing the probability of at most 7 successes which means

what is the probability that out of 10 randomly selected visitors, a maximum of 7 visitors

will buy souvenirs from the souvenir shop.

Here, we need to calculate the probability for P(X<=7). CDF is used to calculate the

cumulative probability.

CDF: of a Random variable (X) is the probability that X  will take the value less than or

equal to x. It can be represented mathematically as below.
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FX(x) = P(X ≤ x)



In our case, Random Variable (X) is the number of visitors who will buy souvenirs from

the souvenir shop.

# plot the probability distribution
# we are plotting the distributions here to better visualize the calculation
# ofcourse you do not 'need' to create the following visualization to answer
# you can directly use the cdf function for probability calculations
barl = plt.bar(k, binomial) # make a bar plot
plt.title("Binomial: n=%i , p=%.2f" % (n, p), fontsize=15) # set the title
plt.xlabel("Number of Successes") # set the x-axis label
plt.ylabel("Probability of Successes") # set the y-axis label
for i in range(0, 8):
    barl[i].set_color("r") # color the bars in red where number of successes
plt.show() # display the plot

In the above graph, the red region represents P(X<=7). Let's calculate the probability

that out of 10 randomly selected visitors, a maximum of 7 will buy souvenirs from the

souvenir shop. We will use binom.cdf() for this.

# calculate cdf
binom.cdf(k=7, n=n, p=p)

0.32220047359999987

P(X ≤ 7)

In [10]:

In [11]:

Out[11]:



Conclusion:

There is a 10.74% chance that every visitor will end up buying souvenirs from the

souvenir shop.

There is a 32.22% chance that a maximum of 7 visitors out of 10 will buy souvenirs from

the souvenir shop.

Let's try to change the probability of success (probability that each visitor will buy

souvenirs from the souvenir shop) to different values like 60%, 70%, 90%, and 95% and

visualize how the shape of the distribution changes.

plt.figure(figsize=(15, 4))

plt.subplot(131)
binomial_70 = binom.pmf(k, n, p=0.7)

# plot the distribution of the same
plt.bar(k, binomial_70)
plt.title("p=%.2f" % (0.7), fontsize=15)
plt.xlabel("Number of Successes")
plt.ylabel("Probability of Successes")

plt.subplot(132)
binomial_80 = binom.pmf(k, n, p=0.8)

# plot the distribution of the same
plt.bar(k, binomial_80)
plt.title("p=%.2f" % (0.8), fontsize=15)
plt.xlabel("Number of Successes")
plt.ylabel("Probability of Successes")

plt.subplot(133)
binomial_90 = binom.pmf(k, n, p=0.9)

# plot the distribution of the same
plt.bar(k, binomial_90)
plt.title("p=%.2f" % (0.9), fontsize=15)
plt.xlabel("Number of Successes")
plt.ylabel("Probability of Successes")

plt.tight_layout(w_pad=5)
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Conclusion:

It is clear from the above plot that the shape of the distribution changes as the value of p

(probability of success) changes.

Continuous Uniform Distribution

Problem statement

IT industry records the amount of time a software engineer needs to fix a  bug in the

initial phase of software development in 'debugging.csv'.

Let

X = Time needed to fix bugs

X is a continuous random variable. Let's see the distribution of X and answer the below

questions.

1. Find the probability that a randomly selected software debugging requires less than

three hours.

2. Find the probability that a randomly selected software debugging requires more

than two hours.

3. Find the 50th percentile of the software debugging time.

Reading the Data into the Dataframe

from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

debugging = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/debugging.cs
debugging.head()

Bug ID Time Taken to fix the bug

0 12986 2.42

1 12987 2.03

2 12988 2.74

3 12989 3.21

4 12990 3.40
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Let's plot the histogram of data along with the PDF of uniform distribution using the

parameters minimum time required and maximum time required for bug fixing.

# visualize the distribution of the time needed for bug fixing
plt.hist(debugging["Time Taken to fix the bug"], density=True)
plt.axhline(1 / 4, color="red")
plt.xlabel("Time required for bug fixing")
plt.ylabel("Probability")
plt.title("Data Distribution")
plt.show()

Another way to recognize a uniform distribution in your data is to look at a density plot.

We will use the distplot of the seaborn library to visualize the distribution of time needed

for bug fixing.

# density plot of time taken to fix the bug
sns.distplot(debugging["Time Taken to fix the bug"], kde=True)
plt.show()
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Insight: As you can see from the above plot that all the values between 1 and 5 are

having almost equal probability, we are going to use continuous uniform distribution. We

need to decide the endpoints. Here, the endpoints are 1 and 5.

X ~ U(1, 5)

# import the required function
from scipy.stats import uniform

# use the uniform.pdf() function to generate the probability distribution
x = np.linspace(1, 5, 50)
probs = uniform.pdf(x, loc=1, scale=4)

Find the probability that a randomly selected software debugging requires a

maximum time of 3 hours

CDF: of a random variable (X) is the probability that X  will take the value less than or

equal to x. It can be represented mathematically as below.

In our case, the random variable (X) is the number of hours.

# plot the probability distribution
# we are plotting the distributions here to better visualize the calculation
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FX(x) = P(X ≤ x)

P(X ≤ 3)
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# ofcourse you do not 'need' to create the following visualization to answer
# you can directly use the cdf function for probability calculations
x1 = np.linspace(1, 3, 25)
plt.plot(x, probs)
plt.fill_between(x, probs)
plt.fill_between(x1, uniform.pdf(x=x1, loc=1, scale=4), color="r")
plt.xlabel("Time required for bug fixing")
plt.ylabel("Probability")
plt.title("Continuous Uniform Distribution: X ~ U(1,5)")
plt.show()

In the above graph, the red region represents P(X<=3). Let's calculate the probability

that that a randomly selected software debugging requires a maximum time of 3 hours.

We will use uniform.cdf() for this.

uniform.cdf(x=3, loc=1, scale=4)

0.5

Find the probability that a randomly selected software bug fixing requires more

than two hours.

# plot the probability distribution
# we are plotting the distributions here to better visualize the calculation
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P(X > 2)
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# ofcourse you do not 'need' to create the following visualization to answer
# you can directly use the cdf function for probability calculations
x1 = np.linspace(2, 5, 20)
plt.plot(x, probs)
plt.fill_between(x, probs)
plt.fill_between(x1, uniform.pdf(x=x1, loc=1, scale=4), color="r")
plt.xlabel("Time required for bug fixing")
plt.ylabel("Probability")
plt.title("Continuous Uniform Distribution: X ~ U(1,5)")
plt.show()

In the above graph, the reg region represents P(X>2). Let's calculate the probability that

that that a randomly selected software debugging requires more than two hours. We will

use uniform.cdf() for this.

1 - uniform.cdf(x=2, loc=1, scale=4)

0.75

Let's calculate the 50th percentile of software debugging time.

ppf(): It is used to calculate the percentile point given probability. It works opposite of

cdf().

uniform.ppf(q=0.5, loc=1, scale=4)
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3.0

Conclusion:

There is a 50% chance that a randomly selected software debugging requires less than

three hours.

There is a 75% chance that a randomly selected software debugging requires more than

two hours.

The 50th percentile of the software debugging time is 3 hours.

Normal Distribution

Problem statement

A testing agency wants to analyze the complexity of SAT Exam 2020. They have

collected the SAT scores of 1000 students in "sat_score.csv". Let's answer some of the

questions that will help to decide the complexity of SAT exam 2020.

1. Calculate the probability that a student will score less than 800 in SAT exam.

2. Calculate the probability that a student will score more than 1300 in SAT exam.

3. Calculate the minimum marks a student must score to secure the 90th percentile.

4. Calculate the minimum marks a student must score to be in the top 5%.

Reading the Data into the Dataframe

sat_score = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/sat_score.cs
sat_score.head()

student_id score

0 1 1018

1 2 1218

2 3 611

3 4 723

4 5 541

Calculating the mean and standard deviation (parameters) of
the SAT score
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# import the required function
from scipy.stats import norm

# estimate the mean and standard deviation of the SAT scores data
mu = sat_score["score"].mean()
sigma = sat_score["score"].std()
print("The estimated mean is", round(mu, 2))
print("The estimated standard deviation is", round(sigma, 2))

The estimated mean is 1007.46
The estimated standard deviation is 204.43

Plotting the Distribution

It will help us analyze the shape of the data and visualize the PDF of normal distribution

using the parameters (mean (mu) and Standard deviation (sigma)) from the data.

# calculate the pdf of SAT scores using norm.pdf()
density = pd.DataFrame() # create an empty dataframe
density["x"] = np.linspace(
    sat_score["score"].min(), sat_score["score"].max(), 100
) # create an array of 100 numbers in between the min and max score range an
density["pdf"] = norm.pdf(density["x"], mu, sigma) # calculate the pdf() of 

fig, ax = plt.subplots() # create the subplot
sns.histplot(sat_score["score"], ax=ax, kde=True, stat="density") # plot the
ax.plot(density["x"], density["pdf"], color="red") # plot the pdf of the nor
plt.title("Normal Distribution") # set the title
plt.show() # display the plot
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# calculate the pdf of SAT scores using norm.pdf()
density = pd.DataFrame() # create an empty dataframe
density["x"] = np.linspace(
    sat_score["score"].min() - 0.01, sat_score["score"].max() + 0.01, 100
) # create an array of 100 numbers in between the min and max score range an
density["pdf"] = norm.pdf(density["x"], mu, sigma) # calculate the pdf() of 

fig, ax = plt.subplots() # create the subplot
sns.histplot(sat_score["score"], ax=ax, kde=True, stat="density") # plot the
ax.plot(density["x"], density["pdf"], color="red") # plot the pdf of the nor
plt.title("Normal Distribution") # set the title
plt.show() # display the plot
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Insight: As you can see in the above plot, there are two curves red and blue. The Blue

curve represents the shape of data distribution and the red curve represents the PDF

(Probability density function). This data is approximately normal. Thus, we can assume

this data distribution to be normal and perform our calculations based on the normality

assumption.

X ~ N(mu, sigma)

Calculate the probability that a student will score less than 800 in SAT exam.

# find the cumulative probability
# norm.cdf() calculates the cumulative probability
prob_less_than_800 = norm.cdf(800, mu, sigma)
print(
    "The probability that a student will score less than 800 is",
    round(prob_less_than_800, 4),
)

The probability that a student will score less than 800 is 0.1551

# plot the probability distribution
# we are plotting the distributions here to better visualize the calculation
# ofcourse you do not 'need' to create the following visualization to answer
# you can directly use the cdf function for probability calculations
plt.plot(density["x"], density["pdf"]) # plot the pdf of the normal distribu
plt.axvline(x=800, c="r") # draw a red vertical line at x = 800
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x1 = np.linspace(density["x"].min(), 800, 50) # create an array of 50 number
plt.fill_between(x1, norm.pdf(x1, mu, sigma), color="r") # fill the specifie
plt.xlabel("Score") # set the x-axis label
plt.ylabel("Probability") # set the y-axis label
plt.title("Normal Distribution") # set the title
plt.show() # display the plot

Calculate the probability that a student will score more than 1300 in SAT exam.

# find the cumulative probability and subtract it from 1 to calculate the pr
prob_greater_than_1300 = 1 - norm.cdf(1300, mu, sigma)
print(
    "The probability that a student will score more than 1300 is",
    round(prob_greater_than_1300, 4),
)

The probability that a student will score more than 1300 is 0.0762

# plot the probability distribution
# we are plotting the distributions here to better visualize the calculation
# ofcourse you do not 'need' to create the following visualization to answer
# you can directly use the cdf function for probability calculations
plt.plot(density["x"], density["pdf"])
plt.axvline(x=1300, c="r")
x1 = np.linspace(1300, density["x"].max(), 50)
plt.fill_between(x1, norm.pdf(x1, mu, sigma), color="r")
plt.xlabel("Score")
plt.ylabel("Probability")
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plt.title("Normal Distribution")
plt.show()

Calculate the minimum marks a student must score in order to be in the 90th

percentile

# calculate the 90th percentile score using ppf() function
# norm.ppf() calculates the percentile point
score_90th_percentile = norm.ppf(0.90, mu, sigma)
print("The 90th percentile score should be", round(score_90th_percentile))

The 90th percentile score should be 1269

# plot the probability distribution
# we are plotting the distributions here to better visualize the calculation
# ofcourse you do not 'need' to create the following visualization to answer
# you can directly use the cdf function for probability calculations
plt.plot(density["x"], density["pdf"])
plt.axvline(x=score_90th_percentile, c="r")
plt.xlabel("Score")
plt.ylabel("Probability")
plt.title("Normal Distribution")
plt.show()
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Calculate the minimum marks a student must score in order to be in the top 5%

# calculate the 95th percentile score using ppf() function
score_top_five_percent = norm.ppf(0.95, mu, sigma)
print("The minimum score to be in top 5% should be", round(score_top_five_pe

The minimum score to be in top 5% should be 1344

# plot the probability distribution
# we are plotting the distributions here to better visualize the calculation
# ofcourse you do not 'need' to create the following visualization to answer
# you can directly use the cdf function for probability calculations
plt.plot(density["x"], density["pdf"])
plt.axvline(x=score_top_five_percent, c="r")
plt.xlabel("Score")
plt.ylabel("Probability")
plt.title("Normal Distribution")
plt.show()
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Conclusion:

1. Only 15.51% of students will score below 800 and 7.62% of students will score

above 1300. It shows that the 2020 SAT exam's complexity is moderate.

2. Students should score at least 1269 to secure the 90th percentile.

3. Students should score at least 1344 to be in the top 5%.

Standardization of Normal Variables

Suppose we know that the SAT scores are normally distributed with a mean of 1000 and

a standard deviation of 200 and ACT scores are normally distributed with a mean of 20

and a standard deviation of 5.

A college provides admission only based on SAT and ACT scores. The college admin

decides to give the top performer fellowship to the student who has performed the best

among all applicants. The highest score received from applicants who appeared for SAT

is 1350 and the highest score received from applicants who appeared for ACT is 30.

Help the college to choose the best candidate for the fellowship!

# plot the two distribution for SAT and ACT scores
from scipy.stats import norm
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fig, (ax1, ax2) = plt.subplots(1,2, figsize = (12,4))
x = np.linspace(400, 1600, 1000)
ax1.plot(x, norm.pdf(x, loc = 1000, scale = 200), color = 'b')
ax1.set_title('Normal Distribution of SAT scores')
ax1.set_xlabel('SAT scores')
ax1.set_ylabel('Probability')
ax1.axvline(1350, ymax = 0.23, linestyle = '--', color = 'green')
x1 = np.linspace(1, 36, 100)
ax2.plot(x1, norm.pdf(x1, loc = 20, scale = 5), color = 'r')
ax2.set_title('Normal Distribution of ACT scores')
ax2.set_xlabel('ACT scores')
ax2.set_ylabel('Probability')
ax2.axvline(30, ymax = 0.18, linestyle = '--', color = 'green')
plt.show()

In the above plot, the blue curve represents the distribution of SAT scores and the red

curve represents the distribution of ACT scores. The highest scores of the applicants in

SAT and ACT exams are dotted with green lines in the respective distributions. However,

it is difficult for us to compare the raw highest scores in the above plot. Thus, we need to

standardize the two scores and compare their Z-scores.

# find the Z-score of highest scorer in SAT among all the applicants
top_sat = (1350 - 1000) / 200
print('The Z-score of highest scorer in SAT among all the applicants', top_s
# find the Z-score of highest scorer in ACT among all the applicants
top_act = (30 - 20) / 5
print('The Z-score of highest scorer in ACT among all the applicants', top_a

The Z-score of highest scorer in SAT among all the applicants 1.75
The Z-score of highest scorer in ACT among all the applicants 2.0

Let's plot the standard normal distribution and visualize the above standardized

scores.

# plot the standard normal distribution
# and visualize the standardized scores
# we are plotting the distributions here to better visualize the calculation
fig, ax = plt.subplots()
x = np.linspace(-4,4,50)
ax.plot(x, norm.pdf(x, loc = 0, scale = 1), color = 'b')

In [38]:

In [39]:



ax.set_title('Standard Normal Distribution')
ax.set_xlabel('Z-scores')
ax.set_ylabel('Probability')
ax.axvline(top_sat, ymax = 0.25, linestyle = '--', color = 'green')
ax.axvline(top_act, ymax = 0.16, linestyle = '--', color = 'black')
plt.show()

In the above plot, the green line represents the standardized highest SAT score of the

applicants which is 1.75 standard deviations above the mean and the black line

represents the standardized highest ACT score of the applicants which is 2 standard

deviations above the mean.

This means that among the applicants, the highest scorer in ACT performed better than

the highest scorer in SAT.

Thus, the top performer fellowship should be given to the applicant who has scored the

highest in ACT.

Central Limit Theorem (CLT)

Central Limit Theorem states that if we independently draw multiple samples from a

population, take the mean of each sample and plot these (sample means), then the plot

will tend to a normal distribution as the size of samples increases, regardless of the

shape of the population distribution.



Let's watch CLT in action using a python simulation

Here is a Uniform Distribution (which is most definitely not Normal)

# importing the required function
from scipy.stats import uniform

# setting the seed for reproducibility
np.random.seed(1)
# creating a uniform distribution population of size 100000
uniform_pop = uniform.rvs(0, 10, size=100000)
# visualizing the uniform distribution
plt.hist(uniform_pop)
plt.title("Uniform Distribution Population")
plt.xlabel("X~U(0,10)")
plt.ylabel("Count")
plt.show()

Let's create a sampling distribution from this population (sample size=5,
number of samples = 500)

draw a sample of size 5, so n=5, we draw 5 independent observations.

get the mean of these 5 observations, i.e - sample mean.

repeat the above 2 steps 500 times, so that we get 500 sample means, where n=5.
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Now, let's observe the shape of this sampling distribution.

# set the seed for reproducibility
np.random.seed(1)
# set the sample size to 5
n = 5
# list to store sample means
sample_means = []
# iterate the loop to draw multiple samples
for j in range(500):
    # draw a sample of size n
    sample = np.random.choice(uniform_pop, size=n)
    # calculate the sample mean.
    sample_mean = np.mean(sample)
    # append the sample mean to the sample_means list
    sample_means.append(sample_mean)
# plot the histogram of sample means
sns.displot(sample_means, kde=True)
plt.title("Distribution of Sample Means for n = " + str(n))
plt.xlabel("sample mean")
plt.ylabel("count")
plt.show()
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Let's create another sampling distribution from this population, increase
the sample size to 15 (n=15)

# set the seed for reproducibility
np.random.seed(1)
# set the sample size to 15
n = 15
# list to store sample means
sample_means = []
# iterate the loop to draw multiple samples
for j in range(500):
    # draw a sample of size n
    sample = np.random.choice(uniform_pop, size=n)
    # calculate the sample mean
    sample_mean = np.mean(sample)
    # append the sample mean to the sample_means list
    sample_means.append(sample_mean)
# plot the histogram of sample means
sns.displot(sample_means, kde=True)
plt.title("Distribution of Sample Means for n = " + str(n))
plt.xlabel("sample mean")
plt.ylabel("count")
plt.show()
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Increase the sample size to 30 (n=30)

# set the seed for reproducibility
np.random.seed(1)
# set the sample size to 30
n = 30
# list to store sample means
sample_means = []
# iterate the loop to draw multiple samples
for j in range(500):
    # draw a sample of size n
    sample = np.random.choice(uniform_pop, size=n)
    # calculate the sample mean
    sample_mean = np.mean(sample)
    # append the sample mean to the sample_means list
    sample_means.append(sample_mean)
# plot the histogram of sample means
sns.displot(sample_means, kde=True)
plt.title("Distribution of Sample Means for n = " + str(n))
plt.xlabel("sample mean")
plt.ylabel("count")
plt.show()
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Increase the sample size to 50 (n=50)

# set the seed for reproducibility
np.random.seed(1)
# set the sample size to 50
n = 50
# iterate the loop to draw multiple samples
for j in range(500):
    # draw a sample of size n
    sample = np.random.choice(uniform_pop, size=n)
    # calculate the sample mean
    sample_mean = np.mean(sample)
    # append the sample mean to the sample_means list
    sample_means.append(sample_mean)
# plot the histogram of sample means
sns.displot(sample_means, kde=True)
plt.title("Distribution of Sample Means for n = " + str(n))
plt.xlabel("sample mean")
plt.ylabel("count")
plt.show()
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Insight

Observe how the sampling distribution moves closer to normality as the sample size

increases.

When the population distribution is Normal

# import the required function
from scipy.stats import norm

# set the seed for reproducibility
np.random.seed(1)
# create a normal distribution population of size 100000
normal_pop = norm.rvs(0, 1, size=100000)
# visualize the normal distribution
plt.hist(normal_pop, 200)
plt.title("Normal Distribution Population")
plt.xlabel("X~N(0,1)")
plt.ylabel("Count")
plt.show()
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Let's create a sampling distribution from this population (sample size=5,
number of samples = 500)

draw a sample of size 5, so n=5, we draw 5 independent observations.

get the mean of these 5 observations, i.e - sample mean.

repeat the above 2 steps 500 times, so that we get 500 sample means, where n=5.

Now, let's observe the shape of this sampling distribution.

# set the seed for reproducibility
np.random.seed(1)
# set the sample size to 5
n = 5
# list to store sample means
sample_means = []
# iterate the loop to draw multiple sample
for j in range(500):
  # draw a sample of size n
  sample = np.random.choice(normal_pop, size = n)
  # calculate the sample mean
  sample_mean = np.mean(sample)
  # append the sample mean to the sample_means list
  sample_means.append(sample_mean)
# plot the histogram of sample means.
sns.displot(sample_means, kde = True)
plt.title('Distribution of Sample Means for n = ' + str(n))
plt.xlabel('sample mean')
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plt.ylabel('count')
plt.show()

Insight

When the population distribution is Normal, sampling distribution is close to normal

for even the smaller sampling sizes like n = 5.

Let's check sampling distribution for sample size n = 15

# set the seed for reproducibility
np.random.seed(1)
# set the sample size to 15
n = 15
# list to store sample means
sample_means = []
# iterate the loop to draw multiple samples
for j in range(500):
    # draw a sample of size n
    sample = np.random.choice(normal_pop, size=n)
    # calculate the sample mean
    sample_mean = np.mean(sample)
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    # append the sample mean to the sample_means list
    sample_means.append(sample_mean)
# plot the histogram of sample means
sns.displot(sample_means, kde=True)
plt.title("Distribution of Sample Means for n = " + str(n))
plt.xlabel("sample mean")
plt.ylabel("count")
plt.show()

Sampling Distribution when Sample Size n = 30

# set the seed for reproducibility
np.random.seed(1)
# set the sample size to 30
n = 30
# list to store sample means
sample_means = []
# iterate the loop to draw multiple samples
for j in range(500):
    # draw a sample of size n
    sample = np.random.choice(normal_pop, size=n)
    # calculate the sample mean
    sample_mean = np.mean(sample)
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    # append the sample mean to the sample_means list
    sample_means.append(sample_mean)
# plot the histogram of sample means
sns.displot(sample_means, kde=True)
plt.title("Distribution of Sample Means for n = " + str(n))
plt.xlabel("sample mean")
plt.ylabel("count")
plt.show()

Let's see if CLT works if the population distribution is Exponential
Distribution (which again is clearly not Normal)

# import the required function
from scipy.stats import expon

# set the seed for reproducibility
np.random.seed(1)
# create a exponential distribution population of size 100000
exp_pop = expon.rvs(size=100000)
# visualize the exponential distribution
plt.hist(exp_pop, 200)
plt.title("Exponential Distribution Population")
plt.xlabel("X~Exp(1)")

In [49]:



plt.ylabel("Count")
plt.show()

Sampling Distribution for Sample Size n = 5

# set the seed for reproducibility
np.random.seed(1)
# set the sample size to 5
n = 5
# list to store sample means
sample_means = []
# iterate the loop to draw multiple samples
for j in range(500):
  # draw a sample of size n
  sample = np.random.choice(exp_pop, size = n)
  # calculate the sample mean
  sample_mean = np.mean(sample)
  # append the sample mean to the sample_means list
  sample_means.append(sample_mean)
# plot the histogram of sample means
sns.displot(sample_means, kde = True)
plt.title('Distribution of Sample Means for n = ' + str(n))
plt.xlabel('sample mean')
plt.ylabel('count')
plt.show()
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Sampling Distribution for Sample Size n = 15

# set the seed for reproducibility
np.random.seed(1)
# set the sample size to 15
n = 15
# list to store sample means
sample_means = []
# iterate the loop to draw multiple samples
for j in range(500):
    # draw a sample of size n
    sample = np.random.choice(exp_pop, size=n)
    # calculate the sample mean
    sample_mean = np.mean(sample)
    # append the sample mean to the sample_means list
    sample_means.append(sample_mean)
# plot the histogram of sample means
sns.displot(sample_means, kde=True)
plt.title("Distribution of Sample Means for n = " + str(n))
plt.xlabel("sample mean")
plt.ylabel("count")
plt.show()
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Sampling Distribution for Sample Size n = 30

# set the seed for reproducibility
np.random.seed(1)
# set the sample size to 30
n = 30
# list to store sample means
sample_means = []
# iterate the loop to draw multiple samples
for j in range(500):
    # draw a sample of size n.
    sample = np.random.choice(exp_pop, size=n)
    # calculate the sample mean
    sample_mean = np.mean(sample)
    # append the sample mean to the sample_means list
    sample_means.append(sample_mean)
# plot the histogram of sample means
sns.displot(sample_means, kde=True)
plt.title("Distribution of Sample Means for n = " + str(n))
plt.xlabel("sample mean")
plt.ylabel("count")
plt.show()
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Sampling Distribution for Sample Size n = 50

# set the seed for reproducibility
np.random.seed(1)
# set the sample size to 50
n = 50
# list to store sample means
sample_means = []
# iterate the loop to draw multiple samples
for j in range(500):
    # draw a sample of size n
    sample = np.random.choice(exp_pop, size=n)
    # calculate the sample mean.
    sample_mean = np.mean(sample)
    # append the sample mean to the sample_means list
    sample_means.append(sample_mean)
# plot the histogram of sample means
sns.displot(sample_means, kde=True)
plt.title("Distribution of Sample Means for n = " + str(n))
plt.xlabel("sample mean")
plt.ylabel("count")
plt.show()
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Key Takeaway

We have tried different distributions to simulate the fundamental idea of CLT. We

can see that no matter what the shape of the population distribution is, the plot of

samples means approximately tends to a normal distribution as the sample size

increases.

Point Estimation

Let's see how population mean is estimated by the sample mean

A non-profit organization sampled the files of the local forest department to come up

with the following amounts (in thousands of dollars) of damages for 10 wildfire incidents:

120, 55, 60, 10, 8, 150, 44, 58, 62, 123

What is the estimate of the average amount of damage in wildfires, in that area?



# get the sample data
sample = np.array([120, 55, 60, 10, 8, 150, 44, 58, 62, 123])

# find the mean of the sample
x_bar = np.mean(sample)
x_bar

69.0

Insight

The estimate of the average amount of damages in wildfires in that area is $69000.

Usually, the point estimate of an unknown population parameter is the corresponding

sample statistic.

For example:

a. Population mean µ is estimated by the sample mean x.̅

b. Population median is estimated by the sample median x̃.

c. Population proportion of success π is estimated by the sample proportion of success

p.

Confidence Interval

Let's see how the confidence interval is constructed for the population
mean when std dev is known

It is rarely the case when you know the population standard deviation and not the mean.

However, it may not be as unlikely an assumption as it seems. For a tight manufacturing

process that is in place for a long time, the variability in the process may be controlled,

but with small changes in temperature or humidity, the mean may change.

Let's construct the confidence interval for an example where the population mean is

unknown and the standard deviation is known.

The caffeine content (in mg) was examined for a random sample of 50 cups of black

coffee dispensed by a new coffee machine. The mean of the sample is found to be 110

mg. It is known that the standard deviation from all the machines of that manufacturer is

7 mg. Construct a 95% confidence interval for µ, the mean caffeine content for cups

dispensed by the machine.

# import the required function
from scipy.stats import norm

# set the values of sample mean and sigma
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x_bar, sigma = 110, 7

# set the value of sample size
n = 50

# construct the confidence interval
np.round(norm.interval(0.95, loc=x_bar, scale=sigma / np.sqrt(n)), 2)

array([108.06, 111.94])

Insight

95% of the time, the mean caffeine content for cups of coffee dispensed by the

machine will be between 108.06 mg and 111.94 mg.

Let's see how the confidence interval is constructed for the population
mean when std dev is unknown

The example discussed above is based on the assumption that the population standard

deviation is known. However, in the majority of cases, that assumption will not be

satisfied.

When we do not know the population standard deviation, it can be estimated from the

sample. In this case, the sample mean follows Student's t distribution with (n-1) degrees

of freedom.

Just like the normal distribution, t-distribution is also very useful in statistical inference.

It is a symmetric distribution around 0. For a very large degrees of freedom, the t

distribution is almost identical to the standard normal distribution. The parameter of t-

distribution is known as degrees of freedom.

Below is the graph of t-distribution for various degrees of freedom(k). We can notice

that the distribution approximates normal as the value of k increases.

# import the required function
from scipy.stats import t
from scipy.stats import norm

# set the values for x
x = np.linspace(-3, 3, 100)

# plot the t distribution for different values of k
fig, axes = plt.subplots(2, 3, sharex=False, sharey=False, figsize=(15, 10))
axes = axes.ravel()
for i, k in zip(range(6), [1, 2, 3, 5, 10, 30]):
    ax = axes[i]
    ax.plot(x, t.pdf(x, df=k), color="blue", label="t dist")
    ax.plot(x, norm.pdf(x), color="red", label="normal dist")
    ax.set_title("t-distribution for k={0}".format(k))
    ax.legend(loc="upper right", fontsize=10)
plt.tight_layout()
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Let's use the t-distribution to construct the confidence interval for the mean when the

population standard deviation is unknown.

The caffeine content (in mg) was examined for a random sample of 50 cups of black

coffee dispensed by a new machine. The mean of the sample is found to be 110 mg and

the sample standard deviation is estimated to be 7 mg. Construct a 95% confidence

interval for µ, the mean caffeine content for cups dispensed by the machine.

# import the required function
from scipy.stats import t

# set the values of sample mean and sample standard deviation
x_bar, s = 110, 7

# set the value of sample size and degrees of freedom
n = 50
k = n - 1

# construct the confidence interval
np.round(t.interval(0.95, df=k, loc=x_bar, scale=s / np.sqrt(n)), 2)

array([108.01, 111.99])

Insight

95% of the time, the mean caffeine content for cups of coffee dispensed by the

machine will be between 108.01 mg and 111.99 mg.
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Key Takeaways

The confidence interval for the population mean can be constructed for both cases

when the population standard deviation is known and when it is unknown. The latter

case is more common which demands the application of t-distribution with

appropriate degrees of freedom.

The general approach to the construction of a confidence interval is to use the

appropriate sample statistic to estimate the population parameter and use the

proper percentile point of the sampling distribution.


