
Context:

In this case study, we will use the Air pollution dataset which contains information about

13 months of data on major pollutants and meteorological levels of a city.

Objective:

The objective of this problem is to reduce the number of features by using

dimensionality reduction techniques like PCA and extract insights.

Importing libraries and overview of the dataset

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

#to scale the data using z-score 
from sklearn.preprocessing import StandardScaler
#Importing PCA and TSNE
from sklearn.decomposition import PCA

import shutil

# Make a copy of the file
original_file_path = 'Air_Pollution.csv'
working_file_path = 'Air_PollutionWorkCopy.csv'

#Copy the file using shutil
shutil.copy(original_file_path, working_file_path)

'Air_PollutionWorkCopy.csv'

Loading data

#Loading data
data= pd.read_csv("Air_PollutionWorkCopy.csv")

data.head().T

In [26]:

In [27]:

Out[27]:

In [34]:

In [35]:



0 1 2 3 4

SrNo 1 2 3 4 5

Date 04-04-2015 05-04-2015 09-04-2015 10-04-2015 11-04-2015

NO 7.22 6.99 7.6 7.57 8.34

CO 1.77 0.22 0.5 0.77 0.48

NO2 47.94 45.27 59.86 63.56 61.99

O3 51.07 19.26 94.29 66.91 69.48

SO2 16.88 16.71 13.11 16.19 20.28

PM2.5 48.99 60.2 46.93 112.95 104.87

Benzene 2.53 3.19 2.29 3.92 5.19

Toulene 9.65 11.1 8.61 10.76 15.95

P_Xylene 3.0 2.67 3.43 4.66 7.66

NOx 52.97 51.31 65.53 68.83 67.4

PM10 82.85 113.53 171.36 232.22 235.05

WindDirection 141.61 166.34 220.18 233.0 221.01

NH3 26.54 30.99 17.4 25.85 29.51

RH 61.34 75.54 33.75 42.96 40.74

Temp 20.24 16.93 26.59 25.21 26.52

WindSpeed 1.22 0.62 1.55 1.18 0.88

VerticalWindSpeed 0.08 -0.04 -0.17 -0.15 0.15

Solar 162.18 99.37 146.94 150.07 137.01

BarPressure 732.25 734.05 728.08 730.47 730.62

Weather Summer Summer Summer Summer Summer

PD_PM2.5 NaN 48.99 NaN 46.93 112.95

PD_PM10 NaN 82.85 NaN 171.36 232.22

PD_NO2 NaN 47.94 NaN 59.86 63.56

PD_SO2 NaN 16.88 NaN 13.11 16.19

PD_CO NaN 1.77 NaN 0.5 0.77

Check the info of the data

data.info()

Out[35]:

In [36]:



<class 'pandas.core.frame.DataFrame'>
RangeIndex: 403 entries, 0 to 402
Data columns (total 27 columns):
#   Column             Non-Null Count  Dtype  

---  ------             --------------  -----  
0   SrNo               403 non-null    int64  
1   Date               403 non-null    object 
2   NO                 401 non-null    float64
3   CO                 402 non-null    float64
4   NO2                401 non-null    float64
5   O3                 397 non-null    float64
6   SO2                399 non-null    float64
7   PM2.5              401 non-null    float64
8   Benzene            402 non-null    float64
9   Toulene            402 non-null    float64
10  P_Xylene           372 non-null    float64
11  NOx                401 non-null    float64
12  PM10               401 non-null    float64
13  WindDirection      402 non-null    float64
14  NH3                401 non-null    float64
15  RH                 402 non-null    float64
16  Temp               401 non-null    float64
17  WindSpeed          402 non-null    float64
18  VerticalWindSpeed  401 non-null    float64
19  Solar              401 non-null    float64
20  BarPressure        401 non-null    float64
21  Weather            403 non-null    object 
22  PD_PM2.5           393 non-null    float64
23  PD_PM10            392 non-null    float64
24  PD_NO2             391 non-null    float64
25  PD_SO2             390 non-null    float64
26  PD_CO              392 non-null    float64

dtypes: float64(24), int64(1), object(2)
memory usage: 85.1+ KB

There are 403 observations and 27 columns in the data.

All the columns except Date and Weather are of numeric data type.

The Date and SrNo for all observations would be unique. We can drop these

columns as they would not add value to our analysis.

Weather is of object data type. We can create dummy variables for each category

and convert it to numeric data type.

The majority of the columns have some missing values.

Let's check the number of missing values in each column.

data.isnull().sum()In [37]:



SrNo                  0
Date                  0
NO                    2
CO                    1
NO2                   2
O3                    6
SO2                   4
PM2.5                 2
Benzene               1
Toulene               1
P_Xylene             31
NOx                   2
PM10                  2
WindDirection         1
NH3                   2
RH                    1
Temp                  2
WindSpeed             1
VerticalWindSpeed     2
Solar                 2
BarPressure           2
Weather               0
PD_PM2.5             10
PD_PM10              11
PD_NO2               12
PD_SO2               13
PD_CO                11
dtype: int64

All the columns except SrNo and Date have missing values.

Data Preprocessing

data.drop(columns=["SrNo", "Date"], inplace=True)

#Imputing missing values with mode(most frequent) for the Weather column and
for col in data.columns:
    if col == "Weather":
        #data[col].fillna(data[col].mode(dropna=True).iloc[0], inplace=True)
        data[col] = data[col].fillna(data[col].mode(dropna=True).iloc[0])
       
    else:
        #data[col].fillna(data[col].dropna().median(), inplace=True)
        data[col] = data[col].fillna(data[col].dropna().median())
      

#Creating dummy variables for Weather column
data = pd.get_dummies(data, drop_first=True)

data.head()

Out[37]:

In [38]:

In [41]:

In [42]:

In [43]:



NO CO NO2 O3 SO2 PM2.5 Benzene Toulene P_Xylene NOx ... Ba

0 7.22 1.77 47.94 51.07 16.88 48.99 2.53 9.65 3.00 52.97 ...

1 6.99 0.22 45.27 19.26 16.71 60.20 3.19 11.10 2.67 51.31 ...

2 7.60 0.50 59.86 94.29 13.11 46.93 2.29 8.61 3.43 65.53 ...

3 7.57 0.77 63.56 66.91 16.19 112.95 3.92 10.76 4.66 68.83 ...

4 8.34 0.48 61.99 69.48 20.28 104.87 5.19 15.95 7.66 67.40 ...

5 rows × 28 columns

Scaling the data

Question 1: Define Standard scaler and fit to the data_scaled

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
data_scaled = scaler.fit_transform(data)

from sklearn.preprocessing import StandardScaler

# Assuming 'data' is your DataFrame or array that you want to scale
scaler = StandardScaler()
data_scaled = scaler.fit_transform(data)

# If 'data' is a DataFrame and you want to keep it as a DataFrame
data_scaled = pd.DataFrame(data_scaled, columns=data.columns)

data_scaled = pd.DataFrame(data_scaled, columns=data.columns)

Principal Component Analysis##

Question 2: Define PCA with n components and random_state
=1 and fit to the scaled data.

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a statistical technique used for dimensionality

reduction, feature extraction, and data visualization. It transforms high-dimensional data

into a lower-dimensional space while retaining as much of the variation (information) in

the data as possible.

Core Concepts Dimensionality Reduction:

Out[43]:

In [44]:

In [45]:

In [46]:

In [47]:



In high-dimensional datasets, many features may be redundant or highly correlated. PCA

reduces the number of dimensions (features) while preserving the most important

patterns or variability in the data. Principal Components:

PCA identifies new axes (called principal components) in the dataset. These

components are linear combinations of the original features. The first principal

component captures the largest variance in the data, the second captures the next

largest variance orthogonal to the first, and so on. Orthogonality:

Each principal component is orthogonal (uncorrelated) to the others. This ensures the

new dimensions are independent of each other. Steps in PCA Standardize the Data:

Center the data by subtracting the mean. Scale the data (if necessary) so that features

are on the same scale. Compute the Covariance Matrix:

The covariance matrix quantifies how features in the dataset vary with respect to each

other. Perform Eigen Decomposition:

Find the eigenvalues and eigenvectors of the covariance matrix. The eigenvectors

represent the directions (principal components), and the eigenvalues represent the

variance captured by those directions. Select Principal Components:

Sort the principal components by eigenvalue (variance explained). Retain the top

k components that capture the majority of the variance. Transform Data:

Project the original data onto the selected principal components to reduce

dimensionality.

Applications Data Visualization: Reduce high-dimensional data to 2 or 3 dimensions for

visualization. Feature Extraction: Create new features (principal components) that are

combinations of original features. Preprocessing for Machine Learning: Reduce noise

and redundancy in datasets to improve model performance. Pattern Recognition: Identify

patterns in complex datasets (e.g., image recognition, genetics, and finance).

Advantages Reduces computational complexity. Removes redundant and correlated

features. Facilitates data visualization. Disadvantages Sensitive to the scale of the data

(requires standardization). Can lose interpretability of features. Assumes linearity and

maximizes variance only. PCA is widely used in fields like image processing, finance,

biology, and more, where data dimensionality can be overwhelming.

import numpy as np

# Example dataset: rows are samples, columns are features
data = np.array([
    [2.5, 2.4],
    [0.5, 0.7],
    [2.2, 2.9],

In [57]:



    [1.9, 2.2],
    [3.1, 3.0],
    [2.3, 2.7],
    [2, 1.6],
    [1, 1.1],
    [1.5, 1.6],
    [1.1, 0.9]
])

# Step 1: Standardize the data (mean = 0 for each feature)
mean = np.mean(data, axis=0)
data_standardized = data - mean

# Step 2: Compute the covariance matrix
cov_matrix = np.cov(data_standardized, rowvar=False)

# Step 3: Perform eigen decomposition
eigenvalues, eigenvectors = np.linalg.eig(cov_matrix)

# Step 4: Sort eigenvectors by eigenvalues in descending order
sorted_indices = np.argsort(eigenvalues)[::-1]
eigenvalues = eigenvalues[sorted_indices]
eigenvectors = eigenvectors[:, sorted_indices]

# Step 5: Select top k eigenvectors (e.g., k = 2 for 2D data)
k = 2
principal_components = eigenvectors[:, :k]

# Step 6: Transform the data to the new principal component space
data_transformed = np.dot(data_standardized, principal_components)

# Output the transformed data
print("Original Data:\n", data)
print("\nTransformed Data:\n", data_transformed)



Original Data:
[[2.5 2.4]
[0.5 0.7]
[2.2 2.9]
[1.9 2.2]
[3.1 3. ]
[2.3 2.7]
[2.  1.6]
[1.  1.1]
[1.5 1.6]
[1.1 0.9]]

Transformed Data:
[[-0.82797019 -0.17511531]
[ 1.77758033  0.14285723]
[-0.99219749  0.38437499]
[-0.27421042  0.13041721]
[-1.67580142 -0.20949846]
[-0.9129491   0.17528244]
[ 0.09910944 -0.3498247 ]
[ 1.14457216  0.04641726]
[ 0.43804614  0.01776463]
[ 1.22382056 -0.16267529]]

from sklearn.decomposition import PCA
import numpy as np

# Example dataset
data = np.array([
    [2.5, 2.4],
    [0.5, 0.7],
    [2.2, 2.9],
    [1.9, 2.2],
    [3.1, 3.0],
    [2.3, 2.7],
    [2, 1.6],
    [1, 1.1],
    [1.5, 1.6],
    [1.1, 0.9]
])

# Step 1: Initialize PCA with the desired number of components
pca = PCA(n_components=2)

# Step 2: Fit and transform the data
data_transformed = pca.fit_transform(data)

# Step 3: Output the results
print("Original Data:\n", data)
print("\nTransformed Data:\n", data_transformed)
print("\nExplained Variance Ratio:\n", pca.explained_variance_ratio_)

In [58]:



Original Data:
[[2.5 2.4]
[0.5 0.7]
[2.2 2.9]
[1.9 2.2]
[3.1 3. ]
[2.3 2.7]
[2.  1.6]
[1.  1.1]
[1.5 1.6]
[1.1 0.9]]

Transformed Data:
[[ 0.82797019  0.17511531]
[-1.77758033 -0.14285723]
[ 0.99219749 -0.38437499]
[ 0.27421042 -0.13041721]
[ 1.67580142  0.20949846]
[ 0.9129491  -0.17528244]
[-0.09910944  0.3498247 ]
[-1.14457216 -0.04641726]
[-0.43804614 -0.01776463]
[-1.22382056  0.16267529]]

Explained Variance Ratio:
[0.96318131 0.03681869]

Key Outputs and Concepts: Transformed Data: This is the new representation of the

original dataset in the reduced-dimensional space (e.g., 2D).

Explained Variance Ratio: Using scikit-learn, pca.explained_variance_ratio_ gives the

proportion of the total variance explained by each principal component.

Example Output: For both methods, you'll see:

Original Data: Your input dataset. Transformed Data: Data projected into the reduced

principal component space. Explained Variance Ratio (if using scikit-learn): A measure of

how much variance each component captures.

Why Use PCA? The above code examples demonstrate how PCA reduces dimensions

while retaining the most important patterns or variability in the data, making it easier to

analyze or visualize datasets.

# Assuming 'data_scaled' is your scaled data
n = data_scaled.shape[1]

# Finding principal components for the data
pca1 = PCA(n_components=n)
data_pca = pd.DataFrame(pca1.fit_transform(data_scaled))

In [48]:



# The percentage of variance explained by each principal component
exp_var1 = pca1.explained_variance_ratio_

# visulaize the explained variance by individual components
plt.figure(figsize = (10,10))
plt.plot(range(1,29), pca1.explained_variance_ratio_.cumsum(), marker = 'o',
plt.title("Explained Variances by Components")
plt.xlabel("Number of Components")
plt.ylabel("Cumulative Explained Variance")

Text(0, 0.5, 'Cumulative Explained Variance')

Question 3: How many Principal components explains more
than 70% variance in the dataset

# The percentage of variance explained by each principal component
exp_var1 = pca1.explained_variance_ratio_

In [49]:

Out[49]:

In [50]:



# Find the least number of components that can explain more than 70% varianc
sum_var = 0
for ix, i in enumerate(exp_var1):
    sum_var += i
    if sum_var > 0.70:
        print("Number of PCs that explain at least 70% variance: ", ix + 1)
        break

Number of PCs that explain at least 70% variance:  5

Additional Observations on Principal Components Explaining
More Than 70% Variance

When determining how many principal components explain more than 70% of the

variance in the dataset, there are several important points to consider:

1. Cumulative Explained Variance:

The cumulative explained variance is the sum of the explained variance ratios of

the principal components. It provides a measure of how much of the total

variance in the dataset is captured by the selected principal components.

2. Threshold Selection:

The choice of 70% as the threshold for cumulative explained variance is

somewhat arbitrary and can be adjusted based on the specific requirements of

the analysis. In some cases, a higher or lower threshold might be more

appropriate.

3. Dimensionality Reduction:

By selecting the number of principal components that explain more than 70% of

the variance, you can reduce the dimensionality of the dataset while retaining

most of the important information. This can help in improving the performance

of machine learning models and reducing computational complexity.

4. Interpretation of Results:

The number of principal components required to explain more than 70% of the

variance can provide insights into the underlying structure of the data. If only a

few principal components are needed, it suggests that the data has a lower

intrinsic dimensionality.

5. Practical Implications:

In practice, reducing the number of features to those principal components that

explain more than 70% of the variance can lead to more efficient and

interpretable models. However, it's important to balance the trade-off between

dimensionality reduction and the loss of information.



Example Code to Determine the Number of Principal
Components

Here is the code to determine the number of principal components that explain more

than 70% of the variance:

# The percentage of variance explained by each principal component
exp_var1 = pca1.explained_variance_ratio_

# Find the least number of components that can explain more than 
70% variance
sum_var = 0
num_components = 0
for ix, i in enumerate(exp_var1):
    sum_var += i
    if sum_var > 0.70:
        num_components = ix + 1
        print("Number of PCs that explain at least 70% variance: ", 
num_components)
        break

Additional Comments and Observations

1. Cumulative Explained Variance Plot:

Visualizing the cumulative explained variance can help in understanding how

many principal components are needed to capture a desired amount of

variance. This can be done using a line plot.

2. Variance Explained by Individual Components:

It's also useful to look at the variance explained by individual components to

see how much each component contributes to the total variance.

3. Impact on Model Performance:

After selecting the principal components, it's important to evaluate the impact

on model performance. In some cases, reducing the number of features might

lead to better generalization and reduced overfitting.

4. Exploration of Different Thresholds:

Exploring different thresholds (e.g., 80%, 90%) can provide additional insights

and help in selecting the most appropriate number of principal components for

the specific analysis.

Example Code for Cumulative Explained Variance Plot

# Visualize the explained variance by individual components
plt.figure(figsize=(10, 6))
plt.plot(range(1, len(exp_var1) + 1), exp_var1.cumsum(), 
marker='o', linestyle='--')



plt.title("Cumulative Explained Variance by Principal Components")
plt.xlabel("Number of Principal Components")
plt.ylabel("Cumulative Explained Variance")
plt.axhline(y=0.70, color='r', linestyle='-')
plt.text(1, 0.75, '70% Variance Threshold', color = 'red', 
fontsize=12)
plt.show()

Example Output and Interpretation

plaintext
Number of PCs that explain at least 70% variance:  5

In this example, the code determines that 5 principal components are needed to explain

at least 70% of the variance in the dataset. The cumulative explained variance plot

provides a visual representation of how the variance is captured by the principal

components, with a red line indicating the 70% threshold.

By considering these additional observations and using the provided code examples, you

can gain a deeper understanding of the principal components and their contribution to

the variance in the dataset.

# The percentage of variance explained by each principal component
exp_var1 = pca1.explained_variance_ratio_

# Find the least number of components that can explain more than 70% varianc
sum_var = 0
num_components = 0
for ix, i in enumerate(exp_var1):
    sum_var += i
    if sum_var > 0.70:
        num_components = ix + 1
        print("Number of PCs that explain at least 70% variance: ", num_comp
        break

Number of PCs that explain at least 70% variance:  5

# Visualize the explained variance by individual components
plt.figure(figsize=(10, 6))
plt.plot(range(1, len(exp_var1) + 1), exp_var1.cumsum(), marker='o', linesty
plt.title("Cumulative Explained Variance by Principal Components")
plt.xlabel("Number of Principal Components")
plt.ylabel("Cumulative Explained Variance")
plt.axhline(y=0.70, color='r', linestyle='-')
plt.text(1, 0.75, '70% Variance Threshold', color = 'red', fontsize=12)
plt.show()

In [55]:

In [56]:



#Making a new dataframe with first 8 principal components and original featu
cols = ['PC1', 'PC2', 'PC3', 'PC4', 'PC5']

pc1 = pd.DataFrame(np.round(pca1.components_.T[:, 0:5],2), index=data_scaled

pc1.shape

(28, 5)

Question 4 : Interpret the coefficients of Five principal
components from the below dataframe.

def color_high(val):
    if val <= -0.25: # you can decide any value as per your understanding
        return 'background: pink'
    elif val >= 0.25:
        return 'background: skyblue'   
    
#pc1.style.applymap(color_high)
pc1.style.map(color_high)

In [51]:

In [52]:

Out[52]:

In [54]:



PC1 PC2 PC3 PC4 PC5

NO 0.250000 -0.050000 -0.180000 0.140000 0.130000

CO 0.210000 0.040000 -0.180000 -0.000000 0.030000

NO2 0.190000 -0.220000 -0.180000 0.060000 -0.240000

O3 0.020000 -0.380000 0.020000 0.180000 -0.080000

SO2 0.120000 -0.190000 0.200000 0.280000 0.110000

PM2.5 0.260000 -0.060000 0.100000 -0.180000 0.140000

Benzene 0.270000 0.090000 -0.150000 0.010000 0.010000

Toulene 0.250000 0.100000 -0.270000 0.080000 -0.010000

P_Xylene 0.250000 0.070000 -0.220000 0.030000 0.100000

NOx 0.240000 0.010000 -0.260000 0.150000 0.120000

PM10 0.230000 -0.170000 0.100000 -0.160000 0.200000

WindDirection 0.090000 -0.060000 -0.030000 0.130000 0.560000

NH3 0.240000 0.040000 0.120000 -0.080000 -0.110000

RH 0.100000 0.460000 0.020000 0.010000 -0.180000

Temp -0.210000 -0.170000 -0.300000 -0.060000 0.200000

WindSpeed -0.200000 -0.040000 0.270000 -0.070000 0.070000

VerticalWindSpeed -0.030000 -0.220000 -0.280000 -0.200000 -0.310000

Solar -0.180000 -0.220000 -0.140000 0.110000 0.270000

BarPressure 0.130000 -0.010000 0.290000 0.270000 0.060000

PD_PM2.5 0.240000 -0.050000 0.180000 -0.240000 0.030000

PD_PM10 0.220000 -0.150000 0.190000 -0.240000 0.040000

PD_NO2 0.180000 -0.230000 -0.080000 -0.020000 -0.280000

PD_SO2 0.130000 -0.170000 0.160000 0.240000 0.080000

PD_CO 0.190000 0.050000 -0.060000 -0.130000 -0.070000

Weather_Monsoon -0.100000 0.360000 -0.150000 0.080000 0.240000

Weather_Spring 0.020000 -0.040000 0.190000 0.530000 -0.290000

Weather_Summer -0.130000 -0.330000 -0.020000 -0.280000 0.050000

Weather_Winter 0.170000 0.120000 0.330000 -0.250000 0.090000

Additional Comments on Interpreting the Coefficients of
Principal Components

Out[54]:



When interpreting the coefficients of the principal components, it's important to

understand what these coefficients represent and how they can be used to gain insights

into the data.

1. Principal Components (PCs):

Principal components are new variables that are linear combinations of the

original variables. They are constructed in such a way that the first principal

component captures the maximum variance in the data, the second principal

component captures the maximum remaining variance orthogonal to the first,

and so on.

2. Coefficients (Loadings):

The coefficients (or loadings) of the principal components indicate the

contribution of each original variable to the principal component. A higher

absolute value of a coefficient means that the corresponding variable has a

greater influence on that principal component.

3. Interpreting the Coefficients:

Positive and Negative Values: Positive coefficients indicate a positive

relationship with the principal component, while negative coefficients indicate a

negative relationship.

Magnitude: The magnitude of the coefficient indicates the strength of the

relationship. Larger magnitudes (whether positive or negative) indicate stronger

relationships.

Dominant Variables: Variables with the largest absolute coefficients are the

most important in defining the principal component.

4. Example Interpretation:

Suppose you have the following coefficients for the first principal component

(PC1):
plaintext
PC1
Variable1  0.5
Variable2 -0.3
Variable3  0.1
Variable4 -0.4
Variable5  0.7
In this example, Variable5  has the largest positive coefficient (0.7),

indicating it has the strongest positive influence on PC1.

Variable4  has a large negative coefficient (-0.4), indicating it has a strong

negative influence on PC1.

Variable1  also has a significant positive influence on PC1 (0.5).

5. Practical Use:



Understanding the coefficients can help in identifying which original variables

are most influential in the principal components. This can be useful for feature

selection, data interpretation, and understanding the underlying structure of the

data.

Example Code to Display and Interpret Coefficients

Here is an example code snippet to display the coefficients of the first five principal

components and provide a basic interpretation:

# Display the coefficients of the first five principal components
cols = ['PC1', 'PC2', 'PC3', 'PC4', 'PC5']
pc1 = pd.DataFrame(np.round(pca1.components_.T[:, 0:5], 2), 
index=data_scaled.columns, columns=cols)

# Print the coefficients
print(pc1)

# Interpretation
for col in cols:
    print(f"\nInterpretation of {col}:")
    sorted_pc = pc1[col].sort_values(ascending=False)
    print(f"Top positive contributors:\n{sorted_pc.head(3)}")
    print(f"Top negative contributors:\n{sorted_pc.tail(3)}")

Example Output and Interpretation

plaintext
         PC1   PC2   PC3   PC4   PC5
Variable1  0.5  -0.1   0.3  -0.2   0.4
Variable2 -0.3   0.4  -0.2   0.5  -0.1
Variable3  0.1   0.3   0.4  -0.3   0.2
Variable4 -0.4  -0.5   0.1   0.2  -0.3
Variable5  0.7   0.2  -0.5  -0.4   0.1

Interpretation of PC1:
Top positive contributors:
Variable5    0.7
Variable1    0.5
Variable3    0.1
Name: PC1, dtype: float64
Top negative contributors:
Variable2   -0.3
Variable4   -0.4
Name: PC1, dtype: float64

Interpretation of PC2:
Top positive contributors:
Variable2    0.4
Variable3    0.3



Variable5    0.2
Name: PC2, dtype: float64
Top negative contributors:
Variable1   -0.1
Variable4   -0.5
Name: PC2, dtype: float64

# Continue for PC3, PC4, and PC5...

In this example, the code sorts the coefficients for each principal component and prints

the top positive and negative contributors, providing a clear interpretation of which

variables are most influential for each principal component.

Comments and Observations:

1. The PCA (Principal Component Analysis) is performed on the scaled data to

reduce its dimensionality.

2. The 'explained_variance_ratio_' attribute of the PCA object provides the

percentage of variance explained by each principal component.

3. The loop iterates through the explained variance ratios, accumulating the sum

until it exceeds 70%.

4. The 'ix + 1' in the print statement gives the number of principal components

required to explain at least 70% of the variance.

5. This approach helps in identifying the optimal number of principal components

to retain, ensuring that the majority of the data's variance is preserved while

reducing dimensionality.

6. Reducing dimensionality can help in improving the performance of machine

learning models by eliminating noise and redundant features.

7. The choice of 70% as the threshold is arbitrary and can be adjusted based on

the specific requirements of the analysis.

8. The results of this code will vary depending on the dataset and the amount of

variance captured by each principal component.


