
Genomic Data Clustering

Background

The discovery of DNA (Deoxyribonucleic Acid), and the critical role it plays in information

storage for all biological beings, was a seminal moment for the biological sciences. All

the information that is needed for the functioning of a living cell is encoded in and

ultimately derived from the DNA of that cell, and this holds true for all biological

organisms on the planet.

DNA can be represented as a text sequence, with an alphabet that only has four

letters - A (Adenosine), C (Cytosine), G (Guanine) and T (Thymine). The diversity of

living organisms and their complex properties is hidden in their genomic sequences. One

of the most exciting problems in modern science is to understand the organization of

living matter by reading genomic sequences.

One distinctive message in a genomic sequence is a piece of text, called a gene. Genes

can be oriented in the sequence in either the forward or backward directions. In the

highest organisms (humans, for example), the notion of a gene is more complex.

It was one of the many great discoveries of the Twentieth century, that biological

information is encoded in genes by means of triplets of letters, called codons in the

biological literature.

In this exercise, we will see that it is possible to verify the validity of the discovery of

three-letter codons, simply by performing unsupervised machine learning on the

genetic sequence.

Problem Statement

The work starts with a fragment of the genomic sequence of the bacterium Caulobacter

Crescentus. This sequence is given as a long text file (300 kb), and the task is to look at

the file and ensure that the text uses the alphabet of four letters (A, C, G and T), and that

these letters are used without spaces. It is noticeable that, although the text seems to be

random, it is well organized, but we cannot understand it without special tools. Statistical

methods may help us do so.

In this case study we accept data from a genome and have the goal of identifying useful

genes versus noise. Unfortunately, we don't know which sequences of genes are useful,

so we have to use Unsupervised Learning to infer this.

In this notebook we walk through the following series of steps:

1. First, the data is imported and prepared. Initially the sequence, a single string, is

split into non-overlapping substrings of length 300, and we may then count the

combinations of the distinct 1, 2, 3, and 4-length sequences of base pairs which

appear in each possible substring.

2. PCA is performed to try to identify the internal structure of the data.

3. Finally, if PCA reveals some internal structure then we'll apply Clustering techniques

to the dataset.

Importing the Required Libraries

import pandas as pd
import numpy as np
from tqdm import tqdm

from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler

Data Preparation

The file format often used for bioinformatics and genomic data is called FASTA. It is a

normally encoded file with headers separating genetic information. We read the file and

strip it of unwanted characters and store it as a string.

we open the file and get an array of its lines
with open ("ccrescentus.fa", "r") as inputFile:
 data = inputFile.readlines()

we concatenate each line from the second (first line is a description), st
geneticCode = ''
for line in data[1:]:
 geneticCode += line.strip()

we count the presence of each genome(a,g,t,c)
aCount = geneticCode.count('a')
gCount = geneticCode.count('g')
tCount = geneticCode.count('t')
cCount = geneticCode.count('c')

for testing we print a sample of the string and check if there are only wa
print(geneticCode[0:30])
print('Test: only a,g,t,c ?')
print(aCount + gCount + tCount + cCount == len(geneticCode))

gccgatagcctatgatccccggcaggcccg
Test: only a,g,t,c ?
True

Converting Text to a Numerical Table

In [2]:

In [3]:

Creating Frequency Tables

Now we've got a string element containing the sequence. The word is any continuous

piece of text that contains several subsequent letters. As there are no spaces in the text,

separation into words is not unique. The next step is to separate it into smaller sub-

strings and create frequency tables for each x-sized word. We start by separating the

string into a number of sub-strings, of a reasonable sample size, to become rows on our

table.

What is a "reasonable size" for a data point?

Knowing that our string has 30k characters, and that we are checking words with a

maximum of 4 - 5 letters, take a size of 300. It generates 1k data points, and allows for

60 5-letter words. It seams reasonable, but do feel free to change it and see the impact.

We clip the whole text into fragments of 300 letters 4 in length and calculate the

frequencies of short words (of length 1–4) inside every fragment. This will give us a

description of the text in the form of a numerical table. There will be four such tables for

every short word length choice from 1 to 4.

As there are only four letters, there are four possible words of length 1 (singlets), 16 =

4^2 possible words of length 2 (duplets), 64 = 4^3 possible words of length 3 (triplets)

and 256 = 4^4 possible words of length 4 (quadruplets). The first table contains four

columns (frequency of every singlet) and the number of rows equals the number of

fragments. The second table has 16 columns and the same number of rows, and so on.

size of the sub strings (data points)
size = 300

dataPoints = []

we copy the entire code into a string, which will removed of its first ele
tempString = geneticCode

we iteratively remove a left chunk of the string and place it into our arr
while len(tempString) > 0:
 dataPoints.append(tempString[0:size])
 tempString = tempString[size:]

print(dataPoints[0])

gccgatagcctatgatccccggcaggcccggggcttggagccgtctggtttggatggaaccctccaaaccagatca
agaggctcctagaacgccgcccgcagggtcacgccccaggtgcgcgggtcgcccggctggccggcgatcaggccgg
tgttgctgggacccacggccagttgctcgaaatagttctcgtcgaaggcgttgcggacccaggcatagaggttcag
cccctcaggcgtgcggaagccggcccggaagttagcgatcgtgtagccgtcaacccaggtgtagatcgaggg

Now let's create a list with the combinations of words possible

import itertools

iterables = ['a','g','t','c']

In [4]:

In [5]:

wordsDict = {}

for words of size 1 to 4, we calculate the cartesian product to get all po
for i in range(1,5):
 words = []
 iterator = itertools.product(iterables, repeat = i)
 for word in iterator:
 s = ''
 for t in word:
 s += t
 words.append(s)
 wordsDict[i] = words

print the dictionary for 3 letter words
print(wordsDict[3])

['aaa', 'aag', 'aat', 'aac', 'aga', 'agg', 'agt', 'agc', 'ata', 'atg', 'at
t', 'atc', 'aca', 'acg', 'act', 'acc', 'gaa', 'gag', 'gat', 'gac', 'gga', 'g
gg', 'ggt', 'ggc', 'gta', 'gtg', 'gtt', 'gtc', 'gca', 'gcg', 'gct', 'gcc',
'taa', 'tag', 'tat', 'tac', 'tga', 'tgg', 'tgt', 'tgc', 'tta', 'ttg', 'ttt',
'ttc', 'tca', 'tcg', 'tct', 'tcc', 'caa', 'cag', 'cat', 'cac', 'cga', 'cgg',
'cgt', 'cgc', 'cta', 'ctg', 'ctt', 'ctc', 'cca', 'ccg', 'cct', 'ccc']

Now, we create a dataframe to begin the frequency matrix construction. From there, all

that we need to do is to apply the count function for each word, and store it as a new

column. We do this for all the 4 sizes of words.

dictionary that will contain the frequency table for each word size
freqTables = {}

for i in range(1,5):
 # create an empty dataFrame with columns being the words on the dictiona
 df = pd.DataFrame(columns = wordsDict[i])
 for index, dataP in enumerate(dataPoints):
 # we create a row with zero values corresponding to a data point
 df.loc[index] = np.zeros(len(wordsDict[i]))
 while len(dataP) > 0:
 # get the left part of the data point (i characters)
 left = dataP[0:i]
 # find it in the respective column and count it there
 df.loc[index, left] += 1
 dataP = dataP[i:]
 freqTables[i] = df

freqTables[3].head()

In [6]:

aaa aag aat aac aga agg agt agc ata atg ... cgt cgc cta ctg ctt ctc

0 0.0 1.0 0.0 3.0 0.0 2.0 0.0 2.0 2.0 0.0 ... 2.0 2.0 2.0 1.0 1.0 4.0

1 1.0 0.0 0.0 3.0 0.0 1.0 0.0 0.0 5.0 0.0 ... 2.0 4.0 0.0 2.0 4.0 2.0

2 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 ... 2.0 4.0 0.0 4.0 5.0 4.0

3 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 ... 0.0 4.0 0.0 5.0 5.0 2.0

4 0.0 0.0 0.0 0.0 2.0 0.0 1.0 0.0 0.0 1.0 ... 2.0 2.0 0.0 8.0 3.0 1.0

5 rows × 64 columns

Now, we have our data in the optimal format to run PCA.

Principal Component Analysis

One reason why we're trying multiple word lengths, is because without additional

domain knowledge it is not clear if there are more meaningful units we could work

with than individual letters.

So we calculate frequency tables to see if certain combinations happen more

frequently (and more frequently together), and thus might be meaningful, than

others.

PCA helps us by creating natural clusters where combinations frequently co-occur

and in reducing the dimensions also enables us to visualize our dataset in a way

that's otherwise not possible.

The first step to run PCA is to standardize the data across columns.

We do this to have the same averages and dispersions across the data, which is

an important concept of both PCA and K-means, as they are distance-based

algorithms.

The StandardScaler package is used to achieve this.

normFreqTables = {}

for i in range(1,5):
 # we eliminate the string column from the data, leaving only the actual
 data = freqTables[i]
 data = StandardScaler(copy=True, with_mean=True, with_std=True).fit_tran
 normFreqTables[i] = pd.DataFrame(data, columns = wordsDict[i])

for testing, we check that the average of a column is close to zero and st
print(normFreqTables[2].loc[:, 'gt'].mean())
print(normFreqTables[2].loc[:, 'gt'].std())

-7.352361918240343e-17
1.0004920049498138

Out[6]:

In [7]:

pca = PCA(n_components = 2)

pCompTables = {}

for i in range(1,5):
 pca.fit(normFreqTables[i])
 pComponents = pca.transform(normFreqTables[i])
 # for each word size, we store the result of the PCA in a table containi
 pCompTables[i] = pd.DataFrame(pComponents[:, [0,1]], columns = ['pc1', '
 print('Explained variance for ' + str(i) + ' letters: ' + str(pca.explai

print(pCompTables[2].head())

Explained variance for 1 letters: 0.7489363490534271
Explained variance for 2 letters: 0.22793202847749075
Explained variance for 3 letters: 0.31670201938180154
Explained variance for 4 letters: 0.02934302869285814
 pc1 pc2
0 -0.990391 -0.432029
1 -0.097711 -0.872844
2 1.179999 0.323746
3 0.552561 1.090515
4 0.079871 1.709785

now we finally need to plot these tables to try to find correlations visua
import matplotlib.pyplot as plt

plt.figure(figsize=(10,10))

for i in range(1,5):
 plt.subplot(2,2,i)
 x = pCompTables[i].loc[:,'pc1']
 y = pCompTables[i].loc[:,'pc2']
 plt.scatter(x,y, s = 1)
 plt.xlabel('pc1')
 plt.ylabel('pc2')
 plt.title(str(i) + ' letter words')

plt.show()

In [8]:

In [9]:

From the plots we can clearly see that 3 letters generates identifiable visual relations

between data points in the first two principal components. These 3 letter words are

called codons in biology.

What do these point clouds (clusters) mean for the 3-letter words?

We can identify 6 distinct poles, or centroids in the graph. If the genetic information

is coded in 3-letter words, each of these clusters has similar distributions of

frequencies of these words.

Why 6 poles then?

Well, since we don't know when a word starts, we can think that if we read the data

point with the shift of 1 letter (i.e. not considering the first letter), it would still

contain basically the same information. Therefore, in the 3 letter words hypothesis,

we can find 3 distinct poles, each representing a shift in reading. The remaining 3

poles are explained since, as the article points out, genetic information is composed

of complementary strings (i.e. readable either from left to right or in the opposite

way). There are however actually 7 clusters, the last one being the points in the

center of the figure, representing the bits of the code that do not carry information.

Clustering

We will now cluster the 3 letter word gene breakdown using the K-means Clustering

unsupervised algorithm. From the previous section, we can detect 6 or 7 clusters.

Knowing that some genes do not carry information, we are led to think that the center

points, far from the 6 distinct centroids, could be a candidate for those. We therefore

assume that there are 7 clusters. (this could be checked by comparing the performance

of 6 or 7 clustering)

kmeans = KMeans(n_clusters = 7)
kmeans.fit(normFreqTables[3])

KMeans(n_clusters=7)

Results in a Graph

Using our clustering results, we can visualize the different colors!

plt.figure(figsize=(8,8))

x = pCompTables[3].loc[:,'pc1']
y = pCompTables[3].loc[:,'pc2']
plt.scatter(x,y, s = 20, c=kmeans.labels_, cmap = 'rainbow')
plt.xlabel('pc1')
plt.ylabel('pc2')
plt.title('K-Means clustering showing on top of principal components')

plt.show()

In [10]:

Out[10]:

In [11]:

Hence, Unsupervised Learning through Clustering (K-means Clustering) and

Dimensionality Reduction (PCA) has allowed us to visualize, validate and provide

supporting evidence for the biological discovery that the DNA genetic sequence is

organized into three-letter words called codons, which are actually responsible for the

amino acids and proteins that are produced by living cells.

