
Socio-economic Factors for Geographic
Clustering

Context

The study of socio-economic factors is foundational to understanding and shaping the

future of societies and hence of extreme interest to various government and non-

government institutions. While GDP is one of the important measures used in one of the

popular economic vernacular, it is not the only measure of the growth and the state of an

economy. This case study aims to deep dive into one such dataset that contains various

socio-economic attributes for countries around the world.

Objective

To identify if there exist various clusters of countries that are more similar to each other

than others, in terms of certain socio-economic factors.

Data Dictionary

The data has the following attributes:

country: Name of the country

child_mort: Death of children under 5 years of age per 1000 live births

exports - Exports in % of the GDP per capita

health - The total spend on health given as % of GDP

imports - The value of imports given as % of GDP per capita

income - The net income per person

inflation - Inflation rate %

life_expec - Average life expectancy in years

total_fer - The fertility rate - Average children per woman in the country

gdpp - GDP per capita

In the dataset, we will not do clustering on the GDP. We will rather try to understand the

variation of other factors with GDP across the groups that we get.

Importing the libraries and overview of the dataset

Note: Please make sure you have installed the sklearn_extra library before running the

below cell. If you have not installed the library, please run the below code to install the

library:

!pip install scikit-learn-extra

Clustering

Context

The study of socio-economic factors is foundational to understanding and shaping the

future of societies and hence of extreme interest to various government and non-

government institutions. While GDP is one of the most popular measures used in popular

vernacular, it is not the only measure of the growth and the state of an economy. This

case study aims to deep dive into one such dataset that contains various socio-

economic attributes for countries around the world.

Objective

To identify if there exist various clusters of countries that are more similar to each other

in terms of certain socio-economic factors

Data Dictionary

The data has the following attributes:

country - Name of the country child_mort - Death of children under 5 years of age per

1000 live births exports - Exports in % age of the GDP per capita health - The total

spend on health given as % of GDP imports - The value of imports given as % of GDP

per capita income - The net income per person inflation - Inflation rate % life_expec -

Average life expectancy in years total_fer - The fertility rate - Average children per

woman in the country gdpp - GDP per capita

#!pip install scikit-learn-extra

import pandas as pd

import numpy as np

import matplotlib.pylab as plt

import seaborn as sns

In [4]:

In [5]:

To scale the data using z-score
from sklearn.preprocessing import StandardScaler

Importing clustering algorithms
from sklearn.cluster import KMeans

from sklearn.mixture import GaussianMixture

from sklearn_extra.cluster import KMedoids

from sklearn.cluster import AgglomerativeClustering

from sklearn.cluster import DBSCAN

Silhouette score
from sklearn.metrics import silhouette_score

import warnings
warnings.filterwarnings("ignore")

Loading the data

data = pd.read_csv("Country-data.csv")

data.head()

country child_mort exports health imports income inflation life_expec tot

0 Afghanistan 90.2 10.0 7.58 44.9 1610 9.44 56.2

1 Albania 16.6 28.0 6.55 48.6 9930 4.49 76.3

2 Algeria 27.3 38.4 4.17 31.4 12900 16.10 76.5

3 Angola 119.0 62.3 2.85 42.9 5900 22.40 60.1

4
Antigua
and

Barbuda
10.3 45.5 6.03 58.9 19100 1.44 76.8

Checking the info of the data

data.info()

In [6]:

Out[6]:

In [7]:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 167 entries, 0 to 166
Data columns (total 10 columns):
Column Non-Null Count Dtype

--- ------ -------------- -----
0 country 167 non-null object
1 child_mort 167 non-null float64
2 exports 167 non-null float64
3 health 167 non-null float64
4 imports 167 non-null float64
5 income 167 non-null int64
6 inflation 167 non-null float64
7 life_expec 167 non-null float64
8 total_fer 167 non-null float64
9 gdpp 167 non-null int64

dtypes: float64(7), int64(2), object(1)
memory usage: 13.2+ KB

Observations:

There are 167 observations and 10 columns in the data.

All columns have 167 non-null values, i.e., there are no missing values.

All the columns except the country name are numerical.

Everything looks great, let's move ahead to check for duplicates.

Check duplicate entries

data[data.duplicated()]

country child_mort exports health imports income inflation life_expec total_fe

There are no duplicate rows in the data. That's good.

Exploratory Data Analysis

Summary Statistics

data.describe().T

In [8]:

Out[8]:

In [9]:

count mean std min 25% 50% 75

child_mort 167.0 38.270060 40.328931 2.6000 8.250 19.30 62.

exports 167.0 41.108976 27.412010 0.1090 23.800 35.00 51.3

health 167.0 6.815689 2.746837 1.8100 4.920 6.32 8.6

imports 167.0 46.890215 24.209589 0.0659 30.200 43.30 58.7

income 167.0 17144.688623 19278.067698 609.0000 3355.000 9960.00 22800.0

inflation 167.0 7.781832 10.570704 -4.2100 1.810 5.39 10.7

life_expec 167.0 70.555689 8.893172 32.1000 65.300 73.10 76.8

total_fer 167.0 2.947964 1.513848 1.1500 1.795 2.41 3.8

gdpp 167.0 12964.155689 18328.704809 231.0000 1330.000 4660.00 14050.0

Observations:

The child mortality rate has a high range from 2.6 to 208 deaths per 1000 live births.

The average child mortality rate is approx 38 deaths per 1000 live births.

Similarly, the exports and imports have a high range of values. The maximum values

for exports and imports are 200% and 174% of GDP respectively. This can happen if

a country's export or import industry exceeds its domestic economy.

The total spend on health is very less in comparison to exports and imports for the

majority of countries. The average spending on health is approx 6.8% of GDP.

The average life expectancy is approx 70 years but the minimum value is just 32

years.

Other variables like gdpp, inflation, and income also show a high variability which

can be expected as they can be very different for different countries.

Overall, % expenditure on health and average life expectancy seem to have a lesser

standard deviation, which reflects less variability across countries. All other

variables seem to have a very high spread across countries. These are the variables

that might help us identify the clusters if they exist.

Let's check the distribution and outliers for each column in
the data

for col in data.columns[1:]:
 print(col)

 print('Skew :', round(data[col].skew(), 2))

 plt.figure(figsize = (15, 4))

 plt.subplot(1, 2, 1)

 data[col].hist(bins = 10, grid = False)

Out[9]:

In [10]:

 plt.ylabel('count')

 plt.subplot(1, 2, 2)

 sns.boxplot(x = data[col])

 plt.show()

child_mort
Skew : 1.45

exports
Skew : 2.45

health
Skew : 0.71

imports
Skew : 1.91

income
Skew : 2.23

inflation
Skew : 5.15

life_expec
Skew : -0.97

total_fer
Skew : 0.97

gdpp
Skew : 2.22

Observations:

As observed earlier, most of the variables have skewed distributions.

The distribution for the % expenditure on health is relatively less skewed with fewer

outliers.

The life expectancy is the only variable which is skewed to the left meaning most of

the countries have already been successful in achieving high life expectancy.

The distribution for all other variables is highly skewed to the right. All these

variables have some outliers to the right end.

Let's check the correlation among the variables

data.select_dtypes(include = "number").columns.to_list()

['child_mort',
'exports',
'health',
'imports',
'income',
'inflation',
'life_expec',
'total_fer',
'gdpp']

plt.figure(figsize = (10, 10))

num_cols = data.select_dtypes(include = "number").columns.to_list()

In [11]:

Out[11]:

In [12]:

sns.heatmap(data[num_cols].corr(), annot = True, cmap = "YlGnBu")

plt.show()

Observations:

There is a strong positive correlation between gdpp and income. This makes sense.

The life expectancy is positively correlated with gdpp. This indicates that people live

longer in richer countries.

There is a strong negative correlation between life expectancy and child mortality.

This is understandable.

The child mortality is also seen to have a strong positive correlation with the fertility

rate.

Scaling the data

Clustering algorithms are distance-based algorithms, and all distance-based

algorithms are affected by the scale of the variables. Therefore, we will scale the

data before applying clustering.

We will drop the variables 'country' variable because it is unique for each

country and would not add value to clustering.

We will also drop the 'gdpp' variable for now, because we want to see if we can

identify clusters of countries without relying on GDP and see later if these clusters

correspond to an average GDP value for the countries in each cluster.

data_new = data.drop(columns = ["country", "gdpp"])

Scaling the data and storing the output as a new DataFrame

scaler = StandardScaler()

data_scaled = pd.DataFrame(scaler.fit_transform(data_new), columns = data_ne

data_scaled.head()

child_mort exports health imports income inflation life_expec to

0 1.291532 -1.138280 0.279088 -0.082455 -0.808245 0.157336 -1.619092 1.

1 -0.538949 -0.479658 -0.097016 0.070837 -0.375369 -0.312347 0.647866 -0.

2 -0.272833 -0.099122 -0.966073 -0.641762 -0.220844 0.789274 0.670423 -0.

3 2.007808 0.775381 -1.448071 -0.165315 -0.585043 1.387054 -1.179234 2

4 -0.695634 0.160668 -0.286894 0.497568 0.101732 -0.601749 0.704258 -0.

Creating copy of the data to store labels from each algorithm
data_scaled_copy = data_scaled.copy(deep = True)

K-Means Clustering

Empty dictionary to store the SSE for each value of K
sse = {}

Iterate for a range of Ks and fit the scaled data to the algorithm.
Use inertia attribute from the clustering object and store the inertia val
for k in range(1, 10):
 kmeans = KMeans(n_clusters = k, random_state = 1).fit(data_scaled)

 sse[k] = kmeans.inertia_

Elbow plot
plt.figure()

plt.plot(list(sse.keys()), list(sse.values()), 'bx-')

In [13]:

In [14]:

Out[14]:

In [15]:

In [16]:

plt.xlabel("Number of cluster")

plt.ylabel("SSE")

plt.show()

Observations:

We can see from the plot that there is a consistent dip from 2 to 8 and there doesn't

seem to be a clear 'elbow' here. We may choose any number of clusters from 2 to 8.

So, let's look at another method to get a 'second opinion'. Let's create a plot with

Silhouette scores to see how it varies with K.

Empty dictionary to store the Silhouette score for each value of K
sc = {}

Iterate for a range of Ks and fit the scaled data to the algorithm. Store
for k in range(2, 10):
 kmeans = KMeans(n_clusters = k, random_state = 1).fit(data_scaled)

 labels = kmeans.predict(data_scaled)

 sc[k] = silhouette_score(data_scaled, labels)

Elbow plot
plt.figure()

In [17]:

plt.plot(list(sc.keys()), list(sc.values()), 'bx-')

plt.xlabel("Number of cluster")

plt.ylabel("Silhouette Score")

plt.show()

Observation:

We observe from the plot that the silhouette score is the highest for K=2. Let's first

understand these 2 clusters.

kmeans = KMeans(n_clusters = 2, random_state = 1)

kmeans.fit(data_scaled)

Adding predicted labels to the original data and the scaled data
data_scaled_copy['KMeans_Labels'] = kmeans.predict(data_scaled)

data['KMeans_Labels'] = kmeans.predict(data_scaled)

data['KMeans_Labels'].value_counts()

KMeans_Labels
0 115
1 52
Name: count, dtype: int64

In [18]:

In [19]:

Out[19]:

Observation:

This looks like a very skewed clustering, with only three observations in one cluster

and more than a hundred in another. Let's check out the profiles of these clusters.

Calculating the mean and the median of the original data for each label
num_cols = num_cols + ["KMeans_Labels"]

mean = data[num_cols].groupby('KMeans_Labels').mean()

median = data[num_cols].groupby('KMeans_Labels').median()

df_kmeans = pd.concat([mean, median], axis = 0)

df_kmeans.index = ['group_0 Mean', 'group_1 Mean', 'group_0 Median', 'group_

df_kmeans.T

group_0 Mean group_1 Mean group_0 Median group_1 Median

child_mort 15.401739 88.844231 11.70 85.65

exports 46.944348 28.203827 39.80 23.30

health 7.062261 6.270385 6.84 5.48

imports 49.026957 42.164729 46.20 39.75

income 23164.000000 3832.750000 16500.00 1960.00

inflation 5.949661 11.833750 3.80 8.95

life_expec 75.377391 59.892308 76.00 60.45

total_fer 2.100522 4.822115 1.95 5.00

gdpp 17997.426087 1832.884615 9070.00 932.00

Observations:

It looks like Cluster 2 belongs to high income countries which also have high gdpp.

Cluster 1 seems to be of low income countries, with low mean gdp as well.

The remaining countries are in Cluster 0 which also happens to be the biggest

cluster. Since the number of developing countries is larger than the group of highly

developed countries, this intuitively makes sense.

Let us now visualize the summary statistics of these clusters below.

cols_visualise = ['child_mort', 'exports', 'health', 'imports', 'income', 'i

for col in cols_visualise:

In []:

In [20]:

Out[20]:

In [21]:

 sns.boxplot(x = 'KMeans_Labels', y = col, data = data)
 plt.show()

Cluster Profiles:

Cluster 2 has only 3 observations. As observed from the scatter plots and the

boxplots, this group consists of outlier high income countries with the highest

percentages of imports and exports in terms of GDP.

Cluster 1 seems to have countries with less desirable values for many indicators.

These countries seem to have the highest inflation rates, the lowest GDP per capita,

the lowest exports as well as imports - all signaling a very poor economic situation.

These countries also have the highest child mortalities, the highest fertility rates,

and the lowest life expectancies. These characteristics are traits of

underdeveloped or developing countries. These countries also seem to have a

trade deficit, i.e., more imports than exports, and as a consequence, may be more

reliant on borrowing and lines of credit to finance their economy.

Cluster 0 is the largest cluster with traits of countries that fall in the middle of the

development spectrum. These countries have a comparatively better state of

affairs than the countries in cluster 1. However, this cluster has a large range of

values, indicating that it is a mix of many different types of countries. Ideally, we do

not want a cluster to be like this as the fundamental idea behind clustering is to

'group similar things' and this cluster seems to have a lot of 'dissimilarity' within it.

Overall, this clustering solution does give us good insights into potential clusters of

similar countries but is not very useful as it is impacted by outlier countries resulting

in one very small cluster and two very big clusters. We should try other algorithms to

see if we can do better.

But before that, let's validate if these clusters relate well with the GDP of the country.

cols_visualise = ['child_mort', 'exports', 'health', 'imports', 'income', 'i

for col in cols_visualise:
 sns.scatterplot(x = col, y = 'gdpp', data = data, hue = 'KMeans_Labels',

 plt.show()

In [22]:

Observations:

The countries with higher fertility rates also seem to have higher populations,

corresponding with lower per capita income in these countries.

The child mortality also seems to be negatively correlated with the GDP of the

country. The high child mortality in such countries could be due to several reasons

such as high poverty or lower net income per person and a relative lack of health

facilities among others.

Let's try another algorithm

K-Medoids Clustering

kmedo = KMedoids(n_clusters = 2, random_state = 1)

kmedo.fit(data_scaled)

data_scaled_copy['kmedoLabels'] = kmedo.predict(data_scaled)

data['kmedoLabels'] = kmedo.predict(data_scaled)

data.kmedoLabels.value_counts()

In [23]:

In [24]:

kmedoLabels
1 98
0 69
Name: count, dtype: int64

data

country child_mort exports health imports income inflation life_expec t

0 Afghanistan 90.2 10.0 7.58 44.9 1610 9.44 56.2

1 Albania 16.6 28.0 6.55 48.6 9930 4.49 76.3

2 Algeria 27.3 38.4 4.17 31.4 12900 16.10 76.5

3 Angola 119.0 62.3 2.85 42.9 5900 22.40 60.1

4
Antigua
and

Barbuda
10.3 45.5 6.03 58.9 19100 1.44 76.8

...

162 Vanuatu 29.2 46.6 5.25 52.7 2950 2.62 63.0

163 Venezuela 17.1 28.5 4.91 17.6 16500 45.90 75.4

164 Vietnam 23.3 72.0 6.84 80.2 4490 12.10 73.1

165 Yemen 56.3 30.0 5.18 34.4 4480 23.60 67.5

166 Zambia 83.1 37.0 5.89 30.9 3280 14.00 52.0

167 rows × 12 columns

Calculating the mean and the median of the original data for each label
original_features = ['child_mort', 'exports', 'health', 'imports', 'income',
num_cols = original_features + ['kmedoLabels']
mean = data[num_cols].groupby('kmedoLabels').mean()

median = data[num_cols].groupby('kmedoLabels').median()

df_kmedoids = pd.concat([mean, median], axis = 0)

df_kmedoids.index = ['group_0 Mean', 'group_1 Mean', 'group_0 Median', 'grou

df_kmedoids[original_features].T

Out[24]:

In [25]:

Out[25]:

In [26]:

group_0 Mean group_1 Mean group_0 Median group_1 Median

child_mort 74.804348 12.546939 64.40 10.300

exports 30.384043 48.660204 25.00 39.950

health 5.872754 7.479592 5.25 7.210

imports 42.386462 50.061224 39.20 47.200

income 4674.971014 25924.387755 2660.00 19250.000

inflation 12.086594 4.750929 8.92 3.375

life_expec 62.194203 76.442857 62.20 76.400

total_fer 4.356087 1.956531 4.56 1.875

gdpp 2237.884058 20516.326531 1170.00 11600.000

Observations:

It looks like Cluster 0 belongs to high income countries, Cluster 2 has poorer

countries with low incomes, and the remaining countries are in Cluster 1, which

happens to be the biggest cluster as well.

for col in cols_visualise:
 sns.boxplot(x = 'kmedoLabels', y = col, data = data)

 plt.show()

Out[26]:

In [27]:

Cluster Profiles:

Cluster 2 countries have the highest average child mortality rate, trade deficit,

inflation rate and least average GDP and net income per person. But the large range

of values for different variables implies that cluster 2 contains a variety of countries,

from underdeveloped to developing ones.

Cluster 1 shows traits of developing countries with comparatively higher GDP, net

income per person and significantly lower child mortality rate as compared to cluster

2. The cluster consists of some outliers but majorly it consists of countries with low

to medium GDP, with a comparatively higher percentage of imports and exports vs

GDP.

Cluster 0 shows traits of highly developed countries with a low child mortality rate

and a higher net income per person, life expectancy, and GDP. These countries have

the highest average expenditure on health as a percentage of GDP.

Observations:

The number of observations for each cluster from K-Medoids is more evenly

distributed in comparison to K-Means clustering.

This is because the clusters from K_Medoids are less affected by outliers from the

data. As we observe, the three outlier countries from K-Means (in terms of imports

and exports) are now included in cluster 1 and do not form a separate cluster like in

K-Means.

Unlike in K-Means, the cluster for developed countries is much bigger but still

retains the overall characteristics of developed countries, as reflected in the higher

values for income per person, life expectancy, and especially in health expenditure

as a percentage of GDP.

Now, let's see what we get with Gaussian Mixture Model.

Gaussian Mixture Model

gmm = GaussianMixture(n_components = 2, random_state = 1)

gmm.fit(data_scaled)

data_scaled_copy['GmmLabels'] = gmm.predict(data_scaled)

data['GmmLabels'] = gmm.predict(data_scaled)

data.GmmLabels.value_counts()

GmmLabels
1 84
0 83
Name: count, dtype: int64

Calculating the mean and the median of the original data for each label
original_features = ['child_mort', 'exports', 'health', 'imports', 'income',

In [28]:

In [29]:

Out[29]:

In [30]:

num_cols = original_features + ['GmmLabels']
mean = data[num_cols].groupby('GmmLabels').mean()

median = data[num_cols].groupby('GmmLabels').median()

df_gmm = pd.concat([mean, median], axis = 0)

df_gmm.index = ['group_0 Mean', 'group_1 Mean','group_0 Median', 'group_1 Me

df_gmm[original_features].T

group_0 Mean group_1 Mean group_0 Median group_1 Median

child_mort 9.951807 66.251190 8.60 62.100

exports 50.393976 31.934512 42.30 28.550

health 7.623253 6.017738 7.72 5.275

imports 49.151807 44.655546 45.30 42.950

income 29058.072289 5373.130952 22700.00 3355.000

inflation 4.593012 10.932690 2.87 7.420

life_expec 77.337349 63.854762 76.80 65.300

total_fer 1.853373 4.029524 1.84 3.880

gdpp 23478.072289 2575.404762 13500.00 1365.000

Observation:

Cluster 1 belongs to high income countries, Cluster 0 belongs to lower income

countries, and the rest of the countries are in Cluster 2.

cols_visualise = ['child_mort', 'exports', 'health', 'imports', 'income', 'i

for col in cols_visualise:
 sns.boxplot(x = 'GmmLabels', y = col, data = data)

 plt.show()

Out[30]:

In [31]:

Cluster Profiles:

This clustering solution looks very similar to the once created using K-Medoids with

one cluster of 'high income' countries, one of 'low income' and one of 'all the

others'. But on closer inspection, we can identify some important differences in this

solution using GMM.

Cluster 1 seems to be of 'developed' countries but this time the median values for all

the key indicators have all improved in comparison to the same cluster obtained

from K-Medoids, with a higher GDP per capita, higher income, higher exports and

imports and marginally higher life expectancy. At the same time, it has lower inflation

rates, lower child mortality rates, and lower fertility as well. Overall, we can say that

this cluster has become more 'pure' in comparison to the one from K-Medoids.

Cluster 0 seems to be of 'underdeveloped' countries but this time the median values

for all the key indicators have improved in comparison to the corresponding K-

Medoids cluster. For e.g., it has higher GDP per capita, higher income per person,

higher exports and imports, and slightly better health expenditure and life

expectancy. That means that this cluster of 'underdeveloped' countries has become

less 'pure'.

Both of the above points can give an idea of what might have happened to the third

cluster, i.e., Cluster 2. It was a mix of 'underdeveloped' & 'developing' countries and

continues to be so, but it has gained some countries on the rich end of the

spectrum, and some countries on the 'underdeveloped' end have moved to the last

cluster.

Overall, this is a slightly more evenly distributed clustering solution than K-Medoids.

Hierarchical Clustering

Let's try to create clusters using Agglomerative Hierarchical clustering.

Here, we decide the number of clusters using a concept called Dendrogram which

is a tree-like diagram that records the sequences of merges or splits.

from scipy.cluster.hierarchy import dendrogram, linkage

The List of all linkage methods to check
methods = ['single',
 'average',
 'complete']

Create a subplot image
fig, axs = plt.subplots(len(methods), 1, figsize = (20, 15))

Enumerate through the list of all methods above, get linkage and plot dend
for i, method in enumerate(methods):
 Z = linkage(data_scaled, metric = 'euclidean', method = method)

 dendrogram(Z, ax = axs[i]);

 axs[i].set_title(f'Dendrogram ({method.capitalize()} Linkage)')

 axs[i].set_ylabel('Distance')

In [32]:

In [33]:

Observations:

We can see that the complete linkage gives better separated clusters. A cluster is

considered better separated if the vertical distance connecting those clusters is

higher.

Now, we can set a threshold distance and draw a horizontal line. The number of

clusters will be the number of vertical lines which are being intersected by the line

drawn using the threshold.

The branches of this dendrogram are cut at a level where there is a lot of ‘spaceʼ to

cut them, that is where the jump in levels of two consecutive nodes is large

Here, we can choose to cut it at ~9 since the space between the two nodes is

largest.

plt.figure(figsize = (20, 7))

plt.title("Dendrograms")

dend = dendrogram(linkage(data_scaled, method = 'complete'))

plt.axhline(y = 9, color = 'r', linestyle = '--')

<matplotlib.lines.Line2D at 0x30feccf90>

In [34]:

Out[34]:

Observations:

We can see that the if we create a horizontal line at threshold distance ~ 9, it cuts 4

vertical lines, i.e., we get 4 different clusters.

Let's fit the algorithms using 4 as the number of clusters.

Clustering with 4 clusters
hierarchical = AgglomerativeClustering(n_clusters = 4, linkage = 'complete')

hierarchical.fit(data_scaled)

data_scaled_copy['HCLabels'] = hierarchical.labels_

data['HCLabels'] = hierarchical.labels_

data.HCLabels.value_counts()

HCLabels
0 103
1 60
2 3
3 1
Name: count, dtype: int64

Observations:

The count of observations in the resulting 4 clusters is unevenly distributed.

We have two clusters with only 3 countries and 1 country, respectively. Let's check

the countries in these clusters.

Checking 3 countries in cluster 2
data[data.HCLabels == 2]

In [35]:

Out[35]: ▾ ?i AgglomerativeClustering

AgglomerativeClustering(linkage='complete', n_clusters=4)

In [36]:

In [37]:

Out[37]:

In [38]:

https://scikit-learn.org/1.5/modules/generated/sklearn.cluster.AgglomerativeClustering.html

country child_mort exports health imports income inflation life_expec

91 Luxembourg 2.8 175.0 7.77 142.0 91700 3.620 81.3

98 Malta 6.8 153.0 8.65 154.0 28300 3.830 80.3

133 Singapore 2.8 200.0 3.96 174.0 72100 -0.046 82.7

Observations:

Similar to K-Means, we got a separate cluster for 3 small countries with the highest

values for imports and exports - Luxembourg, Malta, Singapore.

Checking 1 country in cluster 3
data[data.HCLabels == 3]

country child_mort exports health imports income inflation life_expec tota

113 Nigeria 130.0 25.3 5.07 17.4 5150 104.0 60.5

Observations:

Cluster 3 consists of just one country - Nigeria.

Nigeria has an inflation rate of 104 which is the highest inflation rate in this dataset.

This might have made its distance with the other clusters significantly higher not

allowing it to merge with any of those data points.

Calculating the mean and the median of the original data for each label
original_features = ['child_mort', 'exports', 'health', 'imports', 'income',
num_cols = original_features + ['HCLabels']
mean = data[num_cols].groupby('HCLabels').mean()

median = data[num_cols].groupby('HCLabels').median()

df_hierachical = pd.concat([mean, median], axis = 0)

df_hierachical.index = ['group_0 Mean', 'group_1 Mean', 'group_2 Mean', 'gro

df_hierachical[original_features].T

Out[38]:

In [39]:

Out[39]:

In [40]:

group_0
Mean

group_1
Mean

group_2
Mean

group_3
Mean

group_0
Median

group_1
Median

child_mort 16.678641 75.513333 4.133333 130.00 10.80 73.300

exports 42.532806 32.183667 176.000000 25.30 38.70 28.900

health 7.013883 6.505667 6.793333 5.07 6.91 5.685

imports 42.438504 49.535000 156.666667 17.40 38.40 47.650

income 23425.533981 4218.050000 64033.333333 5150.00 17800.00 2500.000

inflation 6.723262 8.261100 2.468000 104.00 4.49 5.860

life_expec 75.471845 61.740000 81.433333 60.50 76.10 61.300

total_fer 2.074660 4.477333 1.380000 5.84 1.93 4.710

gdpp 18053.689320 2174.233333 57566.666667 2330.00 10700.00 1185.000

Observations:

It looks like Cluster 2 has only 3 countries with high income and high gdpp, Cluster 1

has low income and low gdpp countries, and the rest of the countries are in cluster 0

except for one country which is in cluster 3.

Let's try to visualize the boxplots of different attributes for each cluster to see if we can

spot some more granular patterns.

cols_visualise = ['child_mort', 'exports', 'health', 'imports', 'income', 'i

for col in cols_visualise:
 sns.boxplot(x = 'HCLabels', y = col, data = data)
 plt.show()

Out[40]:

In [41]:

Observations:

The results from hierarchical clustering seem to be difficult to distinguish and

comment on especially because of one cluster which contains 103 countries

Let's try to use DBSCAN algorithm

DBSCAN

dbs = DBSCAN(eps = 1)

data_scaled_copy['DBSLabels'] = dbs.fit_predict(data_scaled)

data['DBSLabels'] = dbs.fit_predict(data_scaled)

data['DBSLabels'].value_counts()

DBSLabels
-1 90
0 55
1 17
2 5

Name: count, dtype: int64

Calculating the mean and the median of the original data for each label
original_features = ['child_mort', 'exports', 'health', 'imports', 'income',
num_cols = original_features + ['DBSLabels']

In [42]:

In [43]:

Out[43]:

In [44]:

mean = data[num_cols].groupby('DBSLabels').mean()

median = data[num_cols].groupby('DBSLabels').median()

df_hierachical = pd.concat([mean, median], axis = 0)

df_hierachical.index = ['group_-1 Mean', 'group_0 Mean', 'group_1 Mean', 'gr

df_hierachical[original_features].T

group_-1
Mean

group_0
Mean

group_1 Mean
group_2

Mean
group_-1

Median
group_0

Median

child_mort 54.907778 17.130909 4.147059 87.340 50.900 15.70

exports 42.922211 41.525455 35.194118 24.000 36.100 37.00

health 6.254556 6.709455 10.294706 6.256 5.275 6.55

imports 48.265177 49.510909 33.982353 37.200 42.400 51.30

income 16254.611111 13433.090909 38382.352941 1785.600 5170.000 11200.00

inflation 11.155856 4.015527 1.309118 10.486 8.605 3.53

life_expec 67.202222 74.203636 81.076471 55.020 67.700 74.50

total_fer 3.578222 2.067455 1.708235 5.504 3.250 1.92

gdpp 10940.611111 8043.018182 43200.000000 718.600 2775.000 6250.00

Observations:

DBSCAN returns 4 clusters. The countries in 3 of these clusters have similar profiles

to the results seen in the other clustering algorithms - high income, low income and

moderately developed countries.

The country profile of the last cluster (cluster -1) seems uncertain. This cluster has a

large difference between the mean values and the median values of various

attributes implying the presence of outliers in the cluster.

Let's visualize the box plots to comment further on these clusters

for col in cols_visualise:
 sns.boxplot(x = 'DBSLabels', y = col, data = data)

 plt.show()

Out[44]:

In [45]:

Observations

We can see that while the three clusters (0, 1, and 2) seem to be way more compact

across all attributes, cluster -1 consists of extreme outliers on at least one attribute.

Therefore, it is not adding any value to our cluster analysis. We can explore it further

to understand which type of countries it consists of.

Conclusion

The choice of clustering algorithm here will depend on the context and use case. But

purely based on foundations of 'what good clustering looks like', one can propose K-

Medoids as it has extreme clusters that are more distinct from each other.

 In []:

