
Introduction to Hidden Markov Models
The Hidden Markov Model (HMM) is a probabilistic model that is used to explain or

derive the probability of any random process. It basically states that an observed

event will be related to a set of probability distributions rather than its step-by-step

status. Assume the system being modelled is a Markov chain, with some hidden states in

the process. In that case, hidden states are a process that is dependent on the main

Markov process/chain.

The primary goal of the HMM is to discover information about a Markov chain by

observing its hidden states. Considering a Markov process X with hidden states Y, the

HMM establishes that the probability distribution of Y for each time stamp must not be

dependent on the history of X at that time.

Case Study - Context

The CES program is a monthly survey conducted by the Bureau of Labor Statistics. The

program provides employment, hours, and earnings estimates based on payroll records

of business establishments. Data produced from the CES survey include nonfarm

employment series for all employees, production and nonsupervisory employees, and

women employees, as well as average hourly earnings, average weekly hours, monthly

umemployment rate and average weekly overtime hours (in manufacturing industries) for

both all employees and production and nonsupervisory employees. Labor Force Data

comes from the 'Current Population Survey (Household Survey)'.

The Unemployment Rate represents the number of unemployed as a percentage of

the labor force.

This rate is also defined as the U-3 measure of labor underutilization.

Objective

In this notebook, we'll look at how to use Hidden Markov Models (HMM) to predict the

Unemployment Rate over the years. Using a HMM, we will predict whether the

unemployment rate will rise or fall each year based on the data.

When we examine the relationship between the provided data and the unemployment

rate, we discover that the unemployment rate peaks whenever there is a

recession/pandemic. So we are interested in how we can build Hidden Markov Models

(HMM) by using the data we have to identify this. Furthermore, we want to see if our

model can predict the unemployment rate more accurately.

Dataset

We will use Unemployment Rate data from the U.S. Bureau of Labor Statistics

(monthly data from 1948 to 2022).

Installing the hmmlearn and stats libraries

hmmlearn is a set of algorithms for unsupervised learning and inference of Hidden

Markov Models.

stats is a pure Python module providing basic statistics functions similar to those

found on scientific calculators.

!pip install stats !pip install hmmlearn

Importing the necessary libraries

from scipy import stats
import statistics

#import stats # Library which provides basic statistics functions similar t

import pandas as pd # Library used for data manipulation and analysis
import numpy as np # Library used for working with arrays
import math # Library to use mathematical functions

import datetime # Library for manipulating dates and times.

from copy import deepcopy

import matplotlib.pyplot as plt # Library for plots and visualisations
%matplotlib inline
from pylab import rcParams

import seaborn as sns # Library for advanced visualisations
sns.set()

from tqdm import tqdm

from sklearn.linear_model import LinearRegression

from hmmlearn.hmm import GaussianHMM # Library for supervised learning of HM
from sklearn.mixture import GaussianMixture
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error

import warnings
warnings.filterwarnings("ignore")

In [4]:

import logging
logging.getLogger('hmmlearn').setLevel(logging.ERROR)

Reading the Unemployment Rate data

dataset=pd.read_csv('UNEMPRATE.csv')

dataset.tail()

DATE UNRATE

886 2021-11-01 4.2

887 2021-12-01 3.9

888 2022-01-01 4.0

889 2022-02-01 3.8

890 2022-03-01 3.6

dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 2 columns):
Column Non-Null Count Dtype

--- ------ -------------- -----
0 DATE 891 non-null object
1 UNRATE 891 non-null float64

dtypes: float64(1), object(1)
memory usage: 14.0+ KB

Employment stability over the years

dataset['Month']=pd.DatetimeIndex(dataset['DATE']).month
dataset['Year']=pd.DatetimeIndex(dataset['DATE']).year

ma_5_yr=dataset['UNRATE'].rolling(60).mean()
ma_3_yr=dataset['UNRATE'].rolling(36).mean()

plt.figure(figsize=(21,7))
sns.lineplot(x=dataset['Year'],y=ma_3_yr,color='green',label="3-Year Average
sns.lineplot(x=dataset['Year'],y=ma_5_yr,color='blue',label="5-Year Average"
sns.lineplot(x=dataset['Year'],y=dataset['UNRATE'],color='red',label="Unempl

<Axes: xlabel='Year', ylabel='UNRATE'>

In [5]:

In [6]:

Out[6]:

In [7]:

In [8]:

In [9]:

In [10]:

Out[10]:

We observe periods of positive and negative growth. Possibly, there is a hidden

process that is influencing the trends.

The portion of the phenomenon that cannot be observed is represented by a hidden

process and it is modeled using a Markov process model. We can see the 5-year

average is far from the actual trend. The 3-year average looks closer. Let's find out the

most stable years.

plt.figure(figsize=(21,7))
sns.lineplot(x=dataset['Year'],y=np.abs(ma_3_yr-dataset['UNRATE']),color='gr

<Axes: xlabel='Year', ylabel='UNRATE'>

Most Stable Years

dataset['DATE'][(np.abs(ma_3_yr-dataset['UNRATE'])).argmin()]

'2001-02-01'

dataset['DATE']=pd.to_datetime(dataset['DATE'])

from datetime import datetime

Year-wise Unemployment Rate

In [11]:

Out[11]:

In [12]:

Out[12]:

In [13]:

In [14]:

dataset.groupby(['Year'])['UNRATE'].median()

Year
1948 3.80
1949 6.30
1950 5.20
1951 3.25
1952 3.00
 ...
2018 3.85
2019 3.60
2020 7.40
2021 5.60
2022 3.80
Name: UNRATE, Length: 75, dtype: float64

Fluctuation in monthly unemployment for each year

plt.figure(figsize=(30,15))
sns.boxplot(x=dataset['Year'],y=dataset['UNRATE'])
plt.xticks(rotation=90)
plt.show()

dataset.groupby(['Year'])['UNRATE'].std().reset_index().dropna().sort_values

In [15]:

Out[15]:

In [16]:

In [17]:

Year UNRATE

0 2020 3.616743

1 1949 1.031768

2 1950 0.894893

3 2021 0.831711

4 2008 0.780443

5 1983 0.761577

6 1982 0.719164

7 2009 0.696528

8 1974 0.674818

9 1970 0.664466

The years with the highest unemployment rate correspond to recession/COVID

periods. This is to be expected, as unemployment spikes during times of economic

distress. COVID-19 had a dramatic effect on the labor market. Unlike a strike or weather

event, the effect was nationwide in the US and, for some industries, sustained over a

long period. The Recession of 1949 was also a downturn in the United States lasting for

11 months. Hence, 2020 has the highest unemployment rate followed by 1949.

Fluctuation in employment for a particular month

plt.figure(figsize=(30,15))
sns.boxplot(x=dataset['Month'],y=dataset['UNRATE'])
plt.xticks(rotation=90)

([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
[Text(0, 0, '1'),
 Text(1, 0, '2'),
 Text(2, 0, '3'),
 Text(3, 0, '4'),
 Text(4, 0, '5'),
 Text(5, 0, '6'),
 Text(6, 0, '7'),
 Text(7, 0, '8'),
 Text(8, 0, '9'),
 Text(9, 0, '10'),
 Text(10, 0, '11'),
 Text(11, 0, '12')])

Out[17]:

In [18]:

Out[18]:

No fluctuation reflects that the month has limited role in determining

unemeployment.

Since each month is present in every year, the distribution is similar at month level.

Checking for seasonality in the data

Seasonality is a characteristic of a time series in which the data experiences regular and

predictable changes that recur every calendar year. Any predictable fluctuation or

pattern that recurs or repeats over a one-year period is said to be seasonal.

dataset['SEASONALITY AND NOISE'] = dataset['UNRATE']/ma_5_yr

#first add a month column
#dataset['Month'] = dataset.index.strftime('%m').astype(np.int)

#initialize the month based dictionaries to store the running total of the m
average_seasonal_values = {1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0, 10:0

average_seasonal_value_counts = {1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0

#calculate the sums and counts
for i in range(0, dataset['SEASONALITY AND NOISE'].size):
 if math.isnan(dataset['SEASONALITY AND NOISE'][i]) is False:
 average_seasonal_values[dataset['Month'][i]] = average_seasonal_valu
 average_seasonal_value_counts[dataset['Month'][i]] = average_seasona

#create a new column in the data frame and fill it with the value of the ave
for i in range(1, 13):
 average_seasonal_values[i] = average_seasonal_values[i] / average_season

dataset['SEASONALITY'] = np.nan

In [19]:

In [20]:

for i in range(0, dataset['SEASONALITY AND NOISE'].size):
 if math.isnan(dataset['SEASONALITY AND NOISE'][i]) is False:
 dataset['SEASONALITY'][i] = average_seasonal_values[dataset['Month']

plt.figure(figsize=(21,7))
sns.lineplot(x=dataset['Year'],y=dataset['SEASONALITY AND NOISE'])

<Axes: xlabel='Year', ylabel='SEASONALITY AND NOISE'>

plt.figure(figsize=(21,7))
sns.lineplot(x=dataset['Year'],y=dataset['SEASONALITY'])

plt.show()

No seasonality observed in the data for the 5 yr moving average

dataset['NOISE'] = dataset['SEASONALITY AND NOISE']/dataset['SEASONALITY']

#plot the seasonal component

fig = plt.figure(figsize=(21,7))

fig.suptitle('The NOISE component')

plt.ylim(0, 1.3)

sns.lineplot(x=dataset['Year'],y=dataset['NOISE'])

In [21]:

Out[21]:

In [22]:

In [23]:

plt.show()

Most of the fluctuation is reflecting as noise. No seasonality and trend in data suggests

we cannot decompose this time series into trend and sesonality components.

The unemeployment rate, as suspected, seems to be determined more by underlying

economic states like recession, COVID, budget, and investments in the market. HMMs

can be used to identify such hidden states that can help us in predicting these patterns

better.

HMM Training

A HMM can be used to study a phenomena in which some portion of phenomena is

directly observed while rest of it can't be observed. The effect of the unobserved portion

can only be estimated and not exactly computed.

We represent such phenomena using a mixture of two random processes.

One of the two processes is a ‘visible process .̓ It is used to represent the observable

portion of the phenomenon. The visible process is modeled using a suitable regression

model such as ARIMA, the Integer Poisson model, or the ever popular Linear Model.

The portion that cannot be observed is represented by a ‘hidden processʼ which is

modeled using a Markov process model.

Reference: https://towardsdatascience.com/a-math-lovers-guide-to-hidden-markov-

models-ad718df9fde8

values = dataset['UNRATE'][:-24].values.reshape(-1,1)

N = 650
train = values[:N]
test = values[N:]

In [24]:

In [25]:

https://towardsdatascience.com/a-math-lovers-guide-to-hidden-markov-models-ad718df9fde8
https://towardsdatascience.com/a-math-lovers-guide-to-hidden-markov-models-ad718df9fde8

Hyperparameter Tuning

There are two main parameters in HMMs:

n_components ----> Determines the number of hidden states to be used in the

model

Algorithm ----> The Viterbi Algorithm

The Viterbi algorithm is a dynamic programming algorithm for obtaining the maximum

a-posteriori probability estimate of the most likely sequence of hidden states, called the

Viterbi path, that results in a sequence of observed events, especially in the context of

Markov information sources and Hidden Markov Models (HMM).

hyperparameter_grid = {
 'n_components': [2,5,7,10,12,15,17,20,22,25,27,30,32,35,37,40],
 'covariance_type' :'diag',
 'algorithm' : ['algo','verterbi'],
 'n_iter' :10000
}

##Create and store all models combinations of n_components and algo
n_comp=[]
mse=[]
mae=[]
al=[]

for i in range(2,50,2):
 for algo in ['map','viterbi']:
 model_hmm = GaussianHMM(n_components=i+2, covariance_type="diag", algori
 model_hmm.fit(train)
 prediction_hmm = model_hmm.predict(test)
 n_comp.append(i+2)
 al.append(algo)
 mse.append(mean_squared_error(test, prediction_hmm) ** (1 / 2))
 mae.append(mean_absolute_error(test, prediction_hmm))

model_df=pd.DataFrame({'comp':n_comp,'mse':mse,'mae':mae,'al':algo})

model_df[model_df['mae']==model_df['mae'].min()]

comp mse mae al

10 14 3.481392 2.787097 viterbi

sns.lineplot(x=model_df['comp'],y=model_df['mse'],color='red')
sns.lineplot(x=model_df['comp'],y=model_df['mae'],color='blue')

<Axes: xlabel='comp', ylabel='mse'>

In [26]:

In [27]:

In [28]:

In [29]:

Out[29]:

In [30]:

Out[30]:

model_hmm = GaussianHMM(n_components=14, covariance_type="diag", algorithm =
model_hmm.fit(train)
prediction_hmm = model_hmm.predict(test)

labels = model_hmm.predict(test)
means = np.zeros_like(test)
for i in range(model_hmm.n_components):
 means[labels == i] = model_hmm.means_[i]

plt.figure(figsize=(14, 8))
plt.title(' Hidden Markov Model with Gaussian emissions')
plt.ylabel('Unemployment for the given month')
plt.plot(test, color = 'red', label = 'Original')
plt.plot(means, color = 'blue', label = 'HMM prediction')
plt.legend()
plt.show()

In [31]:

In [32]:

Model Performance Evaluation

rmse_hmm = mean_squared_error(test, prediction_hmm) ** (1 / 2)
rmse_hmm

3.4858899253172884

mae_hmm = mean_absolute_error(test, prediction_hmm)
mae_hmm

2.7889400921658987

Conclusions

1. We found the Hidden Markov Model to follow the actual data very closely.

2. The peaks seem to be modelled less accurately in comparison to the original data.

In [33]:

Out[33]:

In [34]:

Out[34]:

